An IBM Document from July, 2023 - Release 1.4

IBM Z DevOps Acceleration Program

Building enterprise CI/CD
pipelines for mainframe
applications using the IBM Z &
Cloud Modernization Stack

Mathieu Dalbin

mathieu.dalbin@fr.ibm.com

Nelson Lopez
Nelson.lopezl@ibm.com

Abstract

This document describes how Wazi components of the IBM Z & Cloud
Modernization Stack offering can be integrated to create an enterprise
CI/CD pipeline leveraging Cloud platform capabilities.

mailto:mathieu.dalbin@fr.ibm.com
mailto:Nelson.lopez1@ibm.com

1

5

Table of content

INTRODUCTION

1.1 OUTLINE et eetttttteeee et eeettteeeeeeteeatauaeseeereaatasaasesssesssanaasessssssnsnnssesssssssannseeesssssssannseeessssssnnnnsesessssssnnnnsessssssssnnnns

1.2 PREREQUISITES
PREPARING IBM Z AND CLOUD MODERNIZATION STACK FOR CI/CD PIPELINES........cccccevruerrrneenn. 5

21 ARCHITECTURE OF THE SETUP ..ecutiiutiittiiieeitee ittt ettt ettt ettt he e bbb e e ae e e be e b e et e et e et e s aaesanesaeenbeenreeans 5
2.2 CONFIGURING THE Z RUNTIME ENVIRONMENT PROVIDED BY WAZI SANDBOX.......cveiueiiuieiiieiieniiiisesteeseenteere et 5

2.2.1 Configuring network for Wazi Sandbox.........................
2.2.2 Configuring the build environment in Wazi Sandbox
2.2.3 Setting up credentials for cloning application repositories on Wazi Sandbox
2.3 SETTING UP WAZI FOR DEV SPACES AND WAZI ANALYZEceevvviuueeeeeeretsuieeeseesessnnnesesessssssnnaesesessssssnnnesessssssnnnnseseees

2.3.1 Configuring Wazi fOr DOV SPOCEScouueerueeeieerieeeeste ettt ste ettt ste st e st e sats et e sasesstesaseeaeenaneeaseenanes 11
2.3.2 Setting up Wazi Analyze

REAL-LIFE EXAMPLE - BUILDING A CI/CD PIPELINE WITH AWS DEVELOPER SERVICES 23

3.1 CONFIGURING AWS CODEBUILD TO BUILD MAINFRAME APPLICATIONS

3.2 UsING AWS CODEDEPLOY TO DEPLOY Z/OS ARTIFACTS ...ecvvereverveanne

3.2.1 Installing and configuring AWS CodeDeploy agent..................
3.2.2 Configuring the deployment tasks............cccccccvveveeevveecvuneaenns
3.3 DEFINING THE AWS CODEPIPELINE ORCHESTRATION ...cceeerenuuereneennens

3.3.1 Integrating the build specification................... e —————
3.3.2 Integrating the deployment configuration
3.3.3 Verifying the pipeline execution.............ccceccvveevceveriviveensunenn.

3.4 A SAMPLE DEVELOPER WORKFLOW ..vvtiiiuriieiiirieeiiirreesiretessirteesiaseessibasessmas s e snsaesssabasessnnssesnaaesssanasessnnseesansas
3.4.1 Implementing a change With Wazi fOr DEVSPACESccueecueeeeeeeieesieesieesieesieesiieeiseesieesieessessseesseesseesssesseennses

3.4.2 Monitoring the pipeline execution in AWS CodePipeline
3.4.3 Browsing the pipeline artifacts QNG FEPOITS..........cocveecueeeieeeeeeeese et ste et ese et e s e s sstesteesstessseessteenseesasessssesses

BUILDING A CI/CD PIPELINE WITH AZURE DEVOPS AND IBM Z & CLOUD MODERNIZATION STACK
42

4.1 AZURE DEVOPS AND Z/OS INTEGRATIONceeiuvteteieteeeesssteeesesseesesseseesssesesssssesssasssesssssessssssssssssssesssssesesssssssessssees 42
4.2 CREATING THE GIT REPOSITORY ...euttuterteeteesteutessentesessessesseemeessensensesseesesseestemsensenbessteseeseeneensenseasesseesesneeneensensenses 43
4.3 DEFINING THE Cl PIPELINE IN AZURE DEVOPSoviiiiiiiiiiiriie ittt ettt snae e snae e s sibaeeseans 44
4.4 CREATING THE RELEASE PIPELINE (CD) 1ieeeietrrreeeeeeeieiitireeeeeeeieiitreeeeeeesesasseeeseeesesssssaseseessesasssssseesesesssssnseeeesesnnnses 48

4.4.1 Staging PACKAGES fOr DEPIOYIMENTcc.uvveeeeieeeiiieeeiiteeee ettt et e ettt e e sttt e et e e s este e s staaaeasaeesstaesasssassnsseas 49
4.5 AzURE DEVOPS END-TO-END

L0100] [52

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 2/52

1 Introduction

1.1 Outline

This document is a cookbook presenting different recipes to build and configure enterprise Cl/CD pipelines
for developing and testing mainframe applications on Cloud platforms, by leveraging the IBM Z & Cloud
Modernization Stack offering. The IBM Z & Cloud Modernization Stack includes various capabilities to
modernize mainframe applications, based on the RedHat OpenShift platform. For development and test
purposes, this offering includes Wazi for DevSpaces, Wazi Analyze and Wazi Sandbox, which together
provide mainframe developers with a Cloud-native experience with zero install.

This publication describes one way to setup the integration but doesn’t cover all the other possible
options. The official documentation of each component provides guidance and tips on how to set up the
different parts, while the recipes presented in this documentation focus on required additional
configurations to build a CI/CD pipeline for editing (Wazi for DevSpaces), understanding (Wazi Analyze),
building (with IBM Dependency Based Build) and deploying mainframe applications to the virtualized
execution runtime (Wazi Sandbox).

The described steps are based on Wazi DevSpaces version 2.3, which provides Wazi Analyze as a sidecar
component and Wazi Sandbox version 2.3. For this demonstration, the Extended ADCD distribution will
be leveraged, which ships IBM Dependency Based Build (DBB) version 1.1.3. The following recipes may
not work be applied for older versions of these products, nor with newer versions that may require a
different configuration.

This document will describe the necessary customization of Wazi Sandbox, Wazi for DevSpaces and Wazi
Analyze to integrate these components and start to build a CI/CD pipeline. These steps are required
independently of which Cloud platform you are using. The second section will cover a real-life example
based on the AWS Cloud platform, showcasing how the Wazi offerings can be leveraged to build an
enterprise CI/CD pipeline for Mainframe applications using AWS Cloud platform services.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 3/52

The following diagram shows a generic implementation of a Cloud-based development & test
environment for mainframe applications:

Cloud environment

A > 1

CI/CD Pipeline [+=-]

|

|

| [eee]

I ~~ =— -

~ o e
S~ DBE WebApp

> A
v > % ») Server
Git-based repository Build Deploy

RedHat OpenShift

CIcS
‘Wazi for DevSpaces DBB
———

Wazi Analyze

r

Deb
The Developer

IBM Z and Cloud Modernization Stack

1.2 Prerequisites

Throughout this document, it is assumed all the necessary Wazi components are already deployed to the
OpenShift Cluster Platform that supports these activities. Deployments of the Wazi products are described
in the IBM documentation®. This document details technical, manual steps required to configure the Wazi
components to work together and is aiming experienced administrators and developers. However, to
simplify some of the configuration steps described here, automation has been developed and is available
through Ansible playbooks. A detailed tutorial® presents the different tasks that can be automated to save
time for the developers to set their development environment up. These Ansible playbooks will not be
used in the following document.

It is also assumed that the source files of the Z applications for which the CI/CD pipeline will be set up are
already hosted on the Git-based service of the Cloud platform you are using. If you are interested in
learning more about the migration to Git, you might find this collection interesting®.

The mainframe application used in this setup is called CBSA (for CICS Banking Sample Application) and is
a CICS and DB2-based application made of Cobol programs.

1 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=installing

2 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-improve-
your-development-productivity-ansible

3 https://ibm.github.io/mainframe-downloads/DevOps Acceleration Program/resources.html

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 4/52

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=installing
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-improve-your-development-productivity-ansible
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-improve-your-development-productivity-ansible
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/resources.html

2 Preparing IBM Z and Cloud Modernization Stack for CI/CD pipelines

2.1 Architecture of the setup

The following diagram shows the different components that will be configured as part of this cookbook.
This architecture represents a typical setup when using the Wazi components to build a CI/CD pipeline for
Mainframe applications.

RedHat OpenShift

Wazi for evSpes Wazi Sandbox

BT b]
S I I P crram
DEB Lo)

Deb
The Developer

Wazi Analyze

1BM 7 and Cloud Modernization Stack

When implementing changes to mainframe applications, developers are using Wazi for DevSpaces, a web-
based portal to access their development workspace where they can use the provided features to code,
debug and perform User Builds for their programs.

Leveraging Wazi Analyze, developers can understand the relationships between the different artifacts of
the application they are working on.

Wazi Sandbox provides a virtualized Z runtime environment supporting the developers in their daily tasks,
to build (compile and link-edit) mainframe programs, run debug sessions and perform Unit tests.
Eventually, the programs that are just built can be deployed on the same Wazi Sandbox system to perform
early functional tests. This Sandbox system is typically used by one developer, and an other Sandbox
system can be used for the pipeline activities. In the setup we will detail in this document, the same
Sandbox system is used for convenience, but the implementation should respect IBM’s licensing
conditions.

2.2 Configuring the Z runtime environment provided by Wazi Sandbox

The first building block we will focus on is Wazi Sandbox. This product, which can be deployed on an
OpenShift Cluster Platform, is able to virtualize a Z system. This isolated Z system can serve several
purposes, like building artifacts in a Cl/CD pipeline or perform unit tests before moving the application to
the next integration test environments.

Wazi Sandbox is shipped with a Z distribution known as the Extended ADCD distribution. Extended ADCD
contains many products and subsystems, like CICS, DB2, IMS, already packaged and configured to work
together. The use of this image drastically simplifies the setup of virtualized Z systems. Extended ADCD
also comes with the necessary components to support a modern CI/CD pipeline: IBM Developer for Z (IDz)
Host components (Z Explorer + RSED), Git Client on Z and IBM Dependency Based Build (DBB). For the rest
of the document, we will refer to the Extended ADCD distribution as ADCD.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 5/52

In the next sections, we will review the different configuration steps to perform, to get a working Z
sandbox system that can integrate with the other Wazi products. It is assumed that Wazi Sandbox has
already been deployed and is running properly. Setting up Wazi Sandbox is described in the IBM
documentation®. Also, it is assumed that the Wazi Sandbox system can be reached with an SSH client (like
PUTTY).

2.2.1 Configuring network for Wazi Sandbox

2.2.1.1 Exposing services endpoints of the Wazi Sandbox in the OpenShift Cluster
Platform configuration

From the OpenShift Cluster Platform perspective, the Z Sandbox system is exposing services that are
mapped to external ports on the pod where the containers are running. This configuration is known as a
Node Port configuration. To set this demonstration up, some additional services must be exposed, like the
CICS CMCI port, which will be used during the deployment phase to deploy CICS programs. The following
configuration can be seen optional if you don’t plan to use CMCI to deploy CICS artifacts, but the same
instructions are relevant for any other service you need to expose outside of the Wazi Sandbox system.

The Node Port configuration can be updated to expose additional services, as defined in a YAML file. In
the namespace where the Wazi Sandbox is deployed, with the Administrator view, navigate to the
Network section and select Services. Select the Node Port configuration and edit its YAML definition to
add the port to be exposed. The following snippet exposes the CICS CMCI port (port 7313 on Z) to an
available port on the pod (nodePort 32313):

- name: cmci
protocol: TCP

port: 7313
targetPort: 7313
nodePort: 32313

Save this YAML file, and make sure the changes are committed. The CMCI port for the CICS region already
setup in Wazi Sandbox image will be later used to deploy artifacts to CICS. To make the change permanent,
you can also edit the YAML definition of the WaziSandboxSystem resource that was deployed in OpenShift
Cluster Platform, by adding an entry in the nodeport section of the YAML file.

Most of the operations — if not all - can also be performed through OpenShift command-line commands
(using the oc utility). For instance, the list of Node Ports can be retrieved with the oc get -o yaml service
adcd-nodeport command. Other oc commands can be used to administer the Wazi Sandbox instance. This
documentation page?® lists some of the commands to be used when accessing the Wazi Sandbox system.

4 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=host-option-1-managing-
development-test-environments-sandbox
5 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=sandbox-using-instance

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 6/52

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=host-option-1-managing-development-test-environments-sandbox
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=host-option-1-managing-development-test-environments-sandbox
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=sandbox-using-instance

2.2.1.2 Configuring outbound communication from the Z System

To be able to communicate with the outside world, the Z system running in Wazi Sandbox certainly needs
to know about the domain names and DNS servers used in your Cloud platform. This requires a specific
setup on the Z system.

To modify the network configuration of the Z machine, it is easiest to log in with a Telnet 3270 client and
start a TSO session. The predefined IBMUSER user on ADCD has all the permissions required to perform
this customization. By default, Wazi Sandbox is running the NZ initialization parameter (IPL load
parameter), and you can verify this by running the b IPLINFO MVS command. If the load parameter is
different, the member that contains the TCP/IP configuration to modify may be different as well. The D
symBoLS command will also show which configuration is used, by looking at the &GBLRESL. symbol:

&GBLRESL. = "GBLRESNZ"

If not already done, log into the Wazi Sandbox system with the IBMUSER user, and find the member
ADCD.Z25B.TCPPARMS(GBLTDANZ). Depending on the ADCD version you are using, this member may be
located in a different library, as typically the 2" qualifier describes the ADCD version.

In this GBLTDANZ member, add the following statement (around line 100):

SEARCH us-east-2.compute.internal

And the following statement (around line 145):

NAMESERVER 10.0.0.2

These statements specify that the search for domain names should be performed against this Search
server. Depending on your Cloud provider and Cloud network settings, these values will likely change.

The same two lines should be added to the /etc/resolv.conf file on USS. The RESOLVER task needs to be
refreshed, to take into account these new definitions, with the following command (to be adapted for the
ADCD version you are using):

F RESOLVER,REFRESH,SETUP=ADCD.Z25B.TCPPARMS (GBLRESNZ)

After this setup, you should be able to resolve hostnames in your Cloud platform. You can verify the
correct resolution of hostname by issuing a TSO PING command from the Z Sandbox system, to a machine
that belongs to your Cloud platform.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 7/52

2.2.2 Configuring the build environment in Wazi Sandbox

The next step in the configuration process is about setting up the building block required to support the
Cl/CD pipeline. Typically, Wazi Sandbox systems are connected to the Internet, making it easier to install
additional components.

2.2.2.1 Retrieving the Build framework

As the build phase is leveraging IBM Dependency Based Built (DBB) in this setup, we will retrieve the
zZAppBuild® framework and the DBB Utilities’ scripts to the Z system. These components are available on
public GitHub repositories, that can be locally cloned on the Z Sandbox system.

Before cloning these two repositories to Z, let’s define a location on USS where all the required materials
will be stored. In this setup, the /var/work folder was chosen to host these components. If necessary, a
specific zFS VSAM dataset can be allocated, to make sure enough room is available. If a zFS VSAM dataset
is allocated, make sure it is mounted after the IPL at the right location. The following commands can then
be executed, to clone the two GitHub repositories:

mkdir /var/work

cd /var/work

git clone https://github.com/IBM/dbb-zappbuild.git
git clone https://github.com/IBM/dbb.git

2.2.2.2 Generating keys to facilitate integration into the pipeline

To facilitate the integration of the Z Sandbox system to the pipeline process, we will now enable the login
to the Z system for the IBMUSER user (which we plan to use as our build user) through a private key. Using
any Linux machine, generate SSH private keys using the ssh-keygen command:

ssh-keygen -t rsa -b 4096

6 zAppBuild GitHub repository: https://github.com/IBM/dbb-zappbuild
7 DBB Utilities GitHub repository: https://github.com/IBM/dbb

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 8/52

https://github.com/IBM/dbb-zappbuild
https://github.com/IBM/dbb

The generated keys now need to be sent to the Z sandbox system and accepted for the IBMUSER user. As
the connection is performed with SSH, the session must be established against the OpenShift worker node
that runs the Wazi Sandbox system. This information can be retrieved from the OpenShift console, while
looking at the pods for the Wazi Sandbox project. Here is an example showing such information:

Pods » Pod details

@ cicd-wazisa-82fe-ibm-wazi-d-1f93-0 2 running

Details Metrics YAML Environment Logs Events Terminal

Pod details

Name Status

cicd-wazisa-82fe-ibm-wazi-d-1f93-0 £ Running

Namespace Restart policy

@ wazi-sandbox Always restart

Labels Edit & Active deadline seconds

. . . Not configured

app.kubernetes.io/instance=cicd-wazisandboxsystem-adcd-nazare
app.kubernetes.io/managed-by=ansible Pod IP
app.kubernetes.io/name=ibm-wazi-developer-sandbox-system]72212230
app.kubernetes.io/part-of=ibm-wazi-developer-sandbox
app.kubernetes.io/version=v2.3.1 Node
controller-revision-hash=cicd-wazisa-82fe-ibm-wazi-d-1f93-5d5d6c79¢cc @ ip-10-0-35-9l.us-east-2.compute.internal

statefulset kubernetes.io/pod-name=cicd-wazisa-82fe-ibm-wazi-d-1f93-0

The Wazi Sandbox image is running on node ip-10-0-35-91.us-east-2.compute.internal, as shown on the
bottom-right corner of the above image. This information will be used to set up the SSH connection, while
the SSH port used by the Wazi Sandbox system can be retrieved from the node port configuration:

Service port mapping

Name Port Protocol Pod port or name
zdt-instance- © 5443 TCP @443
controller Q 3243

Node port

ftp 21 TCP (P}

s5N

22 TCP @2

s,

Node port m 9178
(S
o

Node port

The port exposed by Wazi Sandbox to connect with SSH to the Z system is 31772.

With the following command, the keys are registered for the IBMUSER on the Z Sandbox (assuming the
Sandbox system is reachable from the Linux machine where the keys were created, and the SSH server of
the Z system is mapped to 31772, as defined in the NodePort configuration):

ssh-copy-id ibmuser@ip-10-0-35-91.us-east-2.compute.internal -p 31772

After providing the password for IBMUSER and logging out, you should now be able to login again as
IBMUSER without being prompted for the password.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 9/52

2.2.3 Setting up credentials for cloning application repositories on Wazi Sandbox

Itis assumed that the Z application for which the pipeline will be built is already hosted on a Git repository,
and available and accessible on the Cloud platform you are using.

In this demonstration, the Z source files are hosted on the AWS Cloud platform, via the AWS CodeCommit
service. This service is providing a Git-based server, where repositories can be created, and files managed.
Alternative Git servers can be used as well, depending on the Cloud platform you are using.

Before cloning your source files to the Z Sandbox system, setting up the credentials to access the Git
repository is required. When using an AWS CodeCommit repository, this page® provides information about
creating repositories, while this page® explains how to configure credentials for Git clients.

In our case, we chose to use HTTPS communication, although SSH was also a valid option too. When
creating the HTTPS Credentials for Git, the generated username and password need to be stored as they
will be used to configure the Git connection when cloning the AWS CodeCommit repository.

To facilitate the clone operation with Git on Z, the credential helper with Git on Z will be configured to use
a local store. This configuration is enabled by issuing the following command:

git config --global credential.helper 'store --file ~/.my-credentials’

The credentials will then be stored in the file pointed by the --file parameter, the first time the password
is requested through the Git prompt. The next step is to clone your application repository on USS with the
Git Client, using this command (to be adapted for your needs):

git clone https://git-codecommit.us-east-2.amazonaws.com/v1l/repos/CBSA

Where us-east-2 is the AWS region that hosts your AWS CodeCommit server, and CBSA is the Git
repository you are cloning. After running this first clone, the next git fetch or git pull commands
shouldn’t prompt for the username and password.

2.3 Setting up Wazi for Dev Spaces and Wazi Analyze

Wazi for Dev Spaces provides developers with a Web-based development environment, already
configured with facilities to code, debug and build Z application programs. For each developer, a
namespace in OpenShift is created, with its attached storage space, in which the user can create
workspaces. Typically, a workspace represents an application the developer is working on.

For the next phase, it is assumed the Wazi for Dev Spaces Operator is already installed and configured, for
developers to start using it. This documentation!® explains how to deploy and configure Wazi for Dev
Spaces.

8 AWS CodeCommit User Guide: https://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html
% AWS CodeCommit Credentials: https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
10 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=code-option-1-developing-
wazi-dev-spaces

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 10/52

https://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=code-option-1-developing-wazi-dev-spaces
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=code-option-1-developing-wazi-dev-spaces

2.3.1 Configuring Wazi for Dev Spaces

The IBM Documentation website contains information and tutorials* showing how to setup Wazi for Dev
Spaces. The following sections provide additional insights and examples of configuration that were used

in our infrastructure.

2.3.1.1 Creating the workspace in Wazi for Dev Spaces

The first step of the configuration when using Wazi for Dev Spaces starts with the appropriate DeVvfile.
This YAML file describes the configuration of the workspace to be created, with, among other information,
the link to the Git repository that will be cloned to the workspace. Users can choose to create a Custom

Create Workspace

Quick Add Custom Workspace

Workspace to customize their workspace. It is recommended to start from a template:

Namespace @ wazi-devspaces-deb
Workspace Name

Storage Type Persistent

Devfile *

Select a devfile from a templates or enter devfile URL

|\ |- or

Learn more about storage types

Wazi for Dev Spaces
Wazi for Dev Spaces with sample apps

Wazi for Dev Spaces with Wazi Analyze

In our setup, we chose to start with the Wazi for Dev Spaces with Analyze template, as we plan to use
Wazi for Dev Spaces with Wazi Analyze as a sidecar. In order to set the configuration up before working
with our Git-based project, let’s first create a workspace that doesn’t reference any Git repository yet,

meaning the projects section of the YAML file should be deleted:

1 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-creating-

getting-started-your-workspace

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack

Page 11/52

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-creating-getting-started-your-workspace
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-creating-getting-started-your-workspace

Devfile *

Select a devfile from a templates or enter devfile URL

Wazi for Dev SpaceswithWazi ... €@ * or

apiversion: 1.9.0
metadata:
name: CBSA
attributes:
extensions.ignoreRecommendations: 'true'
components:
- type: chePlugin
id: ibm/wazi-code/latest
alias: wazi-code
preferences:
zowe.files.temporaryDownloadsFolder.path: /projects
zowe.security.secureCredentialsEnabled: false
zopeneditor.zapp.useDefaultonlineZappSchema: true
zopeneditor.zcodeformat.useDefaultOnlineZCodeFormatSchema: true
- type: chePlugin
id: ibm/wazi-debug/latest
alias: wazi-debug
- type: dockerimage

Alaacs wnaTs Farmanal

The workspace should then be active after a few minutes, depending on the network bandwidth, as
container images are downloaded for the first time.

Wazi for Dev Spaces comes with a default private key, that is generated when the workspace is created.
This key can be used to clone the Git repository that contains your application’s sources. Typically, you
would need to register that key against the Security Manager provided by your Cloud platform.

In Wazi for Dev Spaces, use the command SSH: View Public Key..., to retrieve the key that was
automatically generated.

Add Existing Key To GitHub. ..
Create Key. ..

Delete Key...

Generate Key For Particular Host...

Generate Key...

Upload Private Key...
View Public Key...

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 12/52

The key is displayed in Wazi for DevSpaces and you can now upload this key to your account security
profile. As an example, on the AWS platform, you want to use the IAM Management Console to define
these keys for each user. On the AWS platform, this is done through the panel shown below, where you
would upload your SSH public key:

SSH public keys for AWS CodeCommit

User SSH public keys to authenticate access to AWS CodeCommit repositories. You can have a maximum of two SSH public keys (active or inactive) at a time. Learn more [

Upload SSH public key

SSH Key ID Uploaded Status
O APKABQORATN7V2PC5GKI 89 days ago @ Active
0 APKABQORATN7Z5G7LCFH 69 days ago @ Active
0 APKABQORATN75QFRQGP2 59 days ago @ Active
0 APKABQORATN7SSQLBATI 3 days ago @ Active

After uploading the key, a new entry is displayed in this table:

SSH public keys for AWS CodeCommit

User SSH public keys to authenticate access to AWS CodeCommit repositories. You can have a maximum of two SSH public keys (active or inactive) at a time. Learn more [

Upload SSH public key

SSH Key ID Uploaded Status
~ APKABQORATN7V2PC5GKI 89 days ago @ Active
. APKA6QORATN7Z5G7LCFH 69 days ago @ Active
D APKABQORATN75QFRQGP2 59 days ago @ Active
_ APKA6QORATN7SSQLEAYI 3 days ago @ Active
- APKAGQORATN7WPDRGJVA Now @© Active

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 13/52

This last SSH Key ID entry will be used as the username that we will use to clone our Git repository to our
workspace, using SSH. As no repository is yet to be defined in Wazi for Dev Spaces, you will get an option
to clone a Git repository, on the Explorer page of Wazi for Dev Spaces:

File Edit Selection View Go Run Terminal Help

@ EXPLORER

~ OPEN EDITORS

~ CHE (WORKSPACE)
No projects in the workspace
yet

You can clone a repository
from a URL.

Clone Repository
You can also add a new folder
to the Che workspace

New Folder

You can now press the Clone Repository button to clone the repository to your local workspace. You need
to specify the URL to your Git repository and the credentials provided by your Cloud platform:

ssh://APKA6QORATN7WPDRGJVA@git-codecommit.us-east-2. amazonaws.com/v1/repos/CBSA|

Clone from URL ssh://APKA6QORATNTWPDRGJVA@git-codecommit.us-east-2 amazonaws.com/v1/re
@ Clone from GitHub

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 14/52

You are then prompted to specify where to clone the repository. It is advised to select the /projects folder:

g projects
v Blprojects
> Bitemp
[che theia-workspace

Cancel Select Repository Location

Wazi for Dev Spaces is now cloning the Git repository and asks you to open it. You can open it in a new
window or simply add it to the current workspace. In our case, we chose the Add to Workspace option:

Cloning git repository "ssh://APKAG6QORATN/WPDRGJVA@git-
codecommit us-east-2 amazonaws.com/v1/repos/CBSA' .

@ Would you like to open the cloned repository, or add it to the current
workspace?

Open Open in New Window Add to Workspace

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 15/52

To finalize the configuration of the Git repository, the name and the email of the user must be defined for
Git to allow pushing content to the Git repository. These properties can be defined in the Preferences of
Wazi for DevSpaces. You can search for Git user in the list of settings to filter out propositions. In the list,
you should be able to find the following properties and set them according to your profile:

Git» User: Email

deb@example_com

Git» User: Name

Your full name t 1 in any commits.

deb

The workspace can now be stopped to edit its Devfile, which should actually be updated to include the
Git repository that was cloned. However, in some cases, the Devfile is not correctly updated and the
projects section of the Devfile YAML file can then be customized, to point to the Git repository containing
your application’s source files:

projects:
- name: CBSA
source:
location: 'ssh://APKA6QORATN7Z5G7LCFH@ git-codecommit.us-east-
2.amazonaws.com/v1l/repos/CBSA '
type: git
branch: Development

In this setup, we specified to connect using SSH, and we provided the username to be used as part of the
URL of our Git repository.

The next configuration step is about customizing the properties for the IBM Z Open Editor plugin installed
in Wazi for Dev Spaces. To resolve local dependencies, for instance, with copybooks, property groups must
be set up according to the structure of your Git repository. With our application’s repository, copybooks
are located in the copylib folder of the CBSA subfolder. As our project is cloned to the /project/CBSA folder
in our workspace, the absolute path to our copybooks is /projects/CBSA/CBSA/copylib. This path must be
specified in the property group, as shown below. Wazi for Dev Spaces is leveraging ZAPP files for property
groups, so this entry should be added to the ZAPP file. If no ZAPP file exists yet for your repository, you
must create one and customize it according to your needs. One sample can be found in the IBM Z Open
Editor GitHub repository®2,

127 Open Editor sample ZAPP file: https://github.com/IBM/zopeneditor-sample/blob/main/zapp.yam|

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 16/52

https://github.com/IBM/zopeneditor-sample/blob/main/zapp.yaml

The following snippet shows how the property group for Cobol copybooks was defined:

cbsa

ZAPP File for CBSA application
3.0.0

IBM CORPORATION
cobol-copybooks
cobol

: syslib
local

"**/copylib"

It is also possible to specify libraries that are available on a remote Z system.
Additional documentation about the ZAPP file can be found in the IBM Z Open Editor GitHub repository?3.

2.3.1.2 Connectivity setup to Wazi Sandbox

The next configuration phase consists of establishing the connectivity to the Wazi Sandbox Z system. As
Wazi for Dev Spaces comes with Zowe Explorer, ZOWE CLI and its RSE plugin installed, we will use this
facility to connect to the Sandbox system, which will be leveraged to perform User Builds.

We start by identifying the RSEAPI endpoint exposed by our Network Configuration in OpenShift Cluster
Platform. For the Wazi Sandbox project, select the Routes entry in the Networking section, in the
Administrator view:

Project: wazi-sandbox v
Networking

Routes.
Y Fi v N
Ingresses
NetworkPolicies Name Status Location Service
@D cicd-wazisandboxsys-82fe-debu © Accepted htty wazisandboxsys-82fe-debu © cicd-wazisandboxsyste
Storage profile v profile vice-wazi-sandbox.apps.zmodstack
Z &
Builds @ W sndboxsystem-adcd-nazare @ Accepted wazisandboxsystem-adcd-nazare- @ cicd-wazisai
rse-api-wazi-sandbox zmodstack-aws
L Z &
Observe
@ ® Ac i saayste e
ps.zmod
Compute " omZ B

Nodes @ wazisandboxsystem-adcd re- @ Accepted htty wazisandboxsystem-adcd-nazare © cicd-wa

Machines

137 Open Editor ZAPP File: https://ibm.github.io/zopeneditor-about/Docs/zapp.html#zapp-use-cases

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 17/52

https://ibm.github.io/zopeneditor-about/Docs/zapp.html#zapp-use-cases

This view lists the routes that are exposed with HTTP/HTTPS protocols. One of the routes should be related
to the RSEAPI service:

Routes > Route details

G cicd-wazisandboxsystem-adcd-nazare-rse-api © accepted

Managed by @ cicd-wazisandboxsystem-adcd-nazare Actions ~
Details ~ Metrics ~ YAML
Route details
Name Location
cicd-wazisandboxsystem-adcd-nazare-rse-api https://cicd-wazisandboxsystem-adcd-nazare-rse-api-wazi-sandbox.apps.zmodstack-aws-

demol.ibmzsoftware.com [B

Copy the location URL, as it will be needed for the definition of the RSE profile in Zowe.

The next step is to create an RSE profile. However, Secure Credentials Storage must first be disabled, as
this facility cannot be used in the current version of Wazi for Dev Spaces since it is executing in a container.
To disable the Secure Credential Storage mechanism, open the settings and search for Secure Credentials.
The following option should then be unchecked:

User

~ Extensions (1)

Zowe » Security: Secure Credentials Enabled
Zowe (1)

Then navigate to the Zowe Explorer view, where you can create a profile. Click the + icon, to create a
profile.

ZOWE EXPLORER

~ DATA SETS ¢ +

> %] Favorites [Add Profile to Data Sets View:

Select the Create a new Team Configuration File option, and choose the Global option for the location of
the profile. In the generated zowe.config.file file, navigate to the rse entry and edit it to add the host
property. Extract the hostname from the URL representing the route exposed for the RSEAPI service and
provide this value - you also want to accept self-signed certificates by setting rejectUnauthorized to false.

"host": "cicd-wazisandboxsystem-adcd-nazare-rse-api-wazi-sandbox.apps.xxxxxxx",
"rejectUnauthorized": false

Also, check that the autoStore property at the end of this file is set to false. You are then prompted to
restart Zowe Explorer: go ahead and do so, and the rse profile should now be recognized as the default
profile. You can now try to retrieve information from the Z system. In Zowe Explorer, you can search for
datasets, using IBMUSER. ** as a filter. After providing the IBMUSER user and the password, you should
be able to retrieve the list of datasets per the request.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 18/52

The next phase is to set up the User Build configuration. Again, edit the ZAPP file to add the workspace’s
definitions for the User Build (customize the following snippet to meet your needs):

: dbb-userbuild
: dbb

: CBSA
"$DBB_HOME/bin/groovyz -DBB_DAEMON_HOST 127.0.0.1 -
DBB_DAEMON_PORT 73860 "
"/var/work/dbb-zappbuild/build.groovy"

"--userBuild"

"--workspace ${zopeneditor.userbuild.userSettings.dbbWorkspace}"
"--application ${application}"

"--hlg ${zopeneditor.userbuild.userSettings.dbbHlg}"

"--outDir ${zopeneditor.userbuild.userSettings.dbbLogDir}"
"--verbose"

${application}"/application-conf
"Zapp*"

"${buildFile.basename}.log"
"BuildReport.*"

Additionally, the following definitions must be added in the User’s settings (in the settings.json file):

"zopeneditor.userbuild.userSettings": {
"dbbWorkspace": "/u/ibmuser/projects"”,
"dbbH1g": "IBMUSER.CBSA.UB",

"dbbLogDir": "/u/ibmuser/projects/userbuild/logs"

},

Wazi for DevSpaces also provides a built-in helper to create your ZAPP file, accessible by pressing the ctrl-
space key combination. This facility lists the keywords available for creating the content of this file.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 19/52

You should now be able to request a User Build with Wazi for Dev Spaces, using the Wazi Sandbox Z
system. The first step to perform is called Run setup for IBM User Build, to initialize the build workspace
on Z and upload the files required for a correct build with zAppBuild (typically, the property files of the
application, which are stored in the application-conf subfolder). When the User Build is then triggered,
the User Build feature will find the necessary dependencies, upload them to the target Z system where
the build is performed and will execute the command defined in the ZAPP file. The output of the build
should appear in the console in Wazi for Dev Spaces:

Go Run Terminal Help

oDPAYAPLebl X it

+ CHE (WORKSPACE)

o
DPA

TIMELINE d
P Development* © Python39.1364-bit @O A 10 DPreviews = b .88/6.15 G Ln108,Col 1 LF UTF-8 Spaces3 COBOL Are(ne) 1 B

2.3.2 Setting up Wazi Analyze

Starting with Wazi for Dev Spaces 2.3, Wazi Analyze is available as a sidecar component when workspaces
are deployed. If the workspace you configured contains the Wazi Analyze component, you can leverage
this facility to scan for the source code stored in the Git repository that you cloned. The results of the scan
are then available in a Web-based interface in your workspace’s environment, directly accessible through
endpoints in Wazi for Dev Spaces. A tutorial on the IBM Documentation website'* shows how to integrate
Wazi Analyze in the developer’s tasks.

1 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=tutorials-tutorial-analyzing-
sample-source-files-wazi-dev-spaces

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 20/52

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=tutorials-tutorial-analyzing-sample-source-files-wazi-dev-spaces
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=tutorials-tutorial-analyzing-sample-source-files-wazi-dev-spaces

For our setup, we took a slightly different approach, where we provided a shell script that performs all
the setup work, like creating the project in Wazi Analyze, performing the scan and starting the necessary
services up. These actions are grouped into a shell script that is stored in the same Git repository that
contains the application’s source code. Stored in a specific subfolder called DevSpaces, the following script
performs the necessary Wazi Analyze tasks automatically (it should be customized for your setup and
application):

#!/bin/sh

rm -rf /home/wazi/data/CBSA

wa-create.sh CBSA multi

cp /home/wazi/config/autoDB.txt /home/wazi/data/autoDB.txt
wa-scan.sh CBSA /projects/CBSA/WaziAnalyze/CBSA.dat

wa-startup.sh -o true

setupWA sh X

CBSA > vS > setupWA sh

rm -rf /home/wazi/data/CBSA
wa-create.sh CBSA multi
cp /home/wazi/config/autoDB.txt /home/wazi/data/autoDB.txt

wa-scan.sh CBSA /projects/CBSA/WaziAnalyze/CBSA.dat

wa-startup.sh -o tt‘ue|

The first action that this script will perform is to perform some cleanup in the Wazi Analyze container, in
case previous scans were already performed. Scan data is stored in the /home/wazi/data folder, each
application being represented as a project in a subfolder (CBSA in our case). The wa-create.sh script helps
in creating a project in Wazi Analyze, by providing the name and type of the project (multi means multiple
types of artifacts to scan). The copy command is used to preserve the existing Database configurations in
Wazi Analyze (it comes with a default application, like GenAppC) and make them available when Wazi
Analyze services are starting.

The wa-scan.sh action asks Wazi Analyze to scan the source code for the CBSA project that was just
created. The /projects/CBSA/WaziAnalyze/CBSA.dat file is a configuration file passed along the command
line, to specify scan options. This file is also part of the Git repository of the application, to facilitate its
use by developers. The last command, wa-startup.sh, is used to start the Wazi Analyze services that are
supporting the Web-based interface to browse the scan results. The -o flag is mandatory in our context,
as the script is running in an OpenShift Cluster Platform environment. When executing this script, the user
will be prompted to provide a password, that will then be used for authentication when the services are
running.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 21/52

To facilitate the launch of this script, a Task can be created in Wazi for Dev Spaces. The task can be defined
in the Devfile, by adding this entry at the end of the YAML file:

- name: Start Wazi Analyze
actions:
- workdir: '${CHE_PROJECTS_ROOT}/CBSA'
type: exec
command: '${CHE_PROJECTS_ROOT}/CBSA/DevSpaces/setupWA.sh'
component: wazi-analyze

This way, a task called Start Wazi Analyze is now available through the Terminal = Run Task... menu
option. When launching this task, the script is executed, creating the project in Wazi Analyze, scanning
the source and launching the services. When the services are launched, the user is prompted with a
password, that will then be used to log into the Wazi Analyze Web interface.

When the Wazi Analyze services are started, a popup window asks to access the Web Interface in a new
tab of your Web browser:

@ Process analyze-ui-endpoint is now listening on port 5000. Open it ?

Open In New Tab Open In Preview

You should now be able to log in with the password provided during the startup of services and browse
the scanned artifacts of your application:

1BM Wazi Analyze

The DevSpaces workspace templates also ship with pre-configured Tasks, that can be used to create a
Wazi Analyze project and scan the content of the repository to populate that project. These tasks are
called Analyze-1 and Analyze-2, and can be executed when needed by the developers, if the above script
setup doesn’t meet users’ expectations.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 22/52

3 Real-life example - Building a CI/CD pipeline with AWS Developer
services

In this section, we will detail the main steps that should be performed to leverage the Wazi components
as part of a modern CI/CD pipeline. To support this configuration, the AWS Cloud platform will be used,
as it provides out-of-the-box services to implement DevOps practices. These services can also be
leveraged for the mainframe applications’ software delivery lifecycle.

Different options exist to deploy the Developer services in the AWS Cloud platform, but in this
demonstration, the AWS CodeCommit®®, AWS CodeBuild*®, AWS CodeDeploy” and AWS CodePipeline*®
services will be used. Customers also have the possibility to deploy GitHub® (instead of the AWS
CodeCommit service) to store the mainframe source codes, or Jenkins?® (instead of AWS CodePipeline) on
AWS to drive the CI/CD pipeline executions.

The following diagram shows the infrastructure that was setup to demonstrate the integration of the Wazi
components on the AWS Cloud platform:

B AWS Cloud

[E8] '/PC - Development Environment

1-TTT= <>
1
| AWS CodePipeline [)
1 XX <-
-]
e
~

%} ~ @ AWS EC2 - DBB

</> WebApp Server
> B

AWS CodeCommit AWS CodeBuild AWS CodeDeploy

Deb > L'r\
The Developer u cics
Wazi for DevSpaces DBB

—

* Wazi Sandbox

©

‘Wazi Analyze

IBM Z and Cloud Modernization Stack

At this stage, the mainframe application source code has already been migrated to the AWS CodeCommit
service, and the necessary steps were performed to allow users to work with this repository. The official

15 https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html|

16 https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html

17 https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

18 https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

19 https://aws.amazon.com/solutions/implementations/github-enterprise/

20 hitps://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-
and-aws-codedeploy/

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 23/52

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://aws.amazon.com/solutions/implementations/github-enterprise/
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/

documentation available on the AWS website provides the necessary information to push the source
artifacts to an AWS CodeCommit repository and explains how to securely connect to the AWS
CodeCommit repository from developers’ workstation.

In our setup, the AWS CodeCommit repository was already used when setting up the Wazi for Dev Spaces
workspace, and we already verified the connectivity between our developer environment and the AWS
CodeCommit service (See section 2.3.1 Configuring Wazi for Dev Spaces).

The next section explains how to configure the AWS CodeBuild service to perform the build of the
mainframe application on the Wazi Sandbox Z system.

3.1 Configuring AWS CodeBuild to build mainframe applications

AWS CodeBuild is using containers to drive build actions. In our configuration, containers make a perfect
choice for more flexibility and agility, because most of the actions of the build phase are actually
performed on the Wazi Sandbox system. For connectivity purposes, the SSH protocol will be used to
submit build commands on the Z system.

Through the AWS CodeBuild interface, the first step is to create a new Build project. After providing a
meaningful name for this project (CBSA-Build-Sandbox in our case), you can define the appropriate
settings for your configuration. The AWS CodeBuild documentation? provides guidance and details the
different options for the Build project.

In our setup, we chose to disable the source section, as the Git repository will be cloned from Z directly
during the pipeline execution. The Environment section describes the selected container image to execute
the actions. We chose an Ubuntu-based image with the latest software stack. Any image with an SSH client
is sufficient to invoke the mainframe build actions.

21 https://docs.aws.amazon.com/codebuild/latest/userguide/getting-started.html

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 24/52

https://docs.aws.amazon.com/codebuild/latest/userguide/getting-started.html

The Buildspec section defines the actions that will be performed during the build. This is where the
commands executed on Z will be defined. Commands can be provided in a YAML format, for better
readability. The following section is an example of a typical setup, as used in our configuration:

version: 0.2
phases:

pre_build:

commands :

- aws secretsmanager get-secret-value --secret-id WaziSandboxSSHPrivateKey --query
'SecretString' --output text > /tmp/id_rsa

- chmod 600 /tmp/id_rsa

build:
commands:

- ssh -i /tmp/id_rsa ibmuser@ip-10-0-35-91.us-east-2.compute.internal -p 31772 -o
StrictHostKeyChecking=accept-new -o SendEnv=CodeCommitBranchName bash 'env;.
/u/ibmuser/.bash_profile;env;cd /var/work/pipeline/CBSA;git fetch --all; rm -rf
/var/work/temp/BUILD-OUTPUT; mkdir -p /var/work/temp/BUILD-OUTPUT;git checkout Development;
git pull --all;$DBB_HOME/bin/groovyz -DBB_DAEMON_HOST 127.0.0.1 -DBB_DAEMON_PORT 7380 -
Djava.library.path=$DBB_HOME/lib:/usr/lib/java_runtime64 /var/work/dbb-zappbuild/build.groovy
--workspace /var/work/pipeline/CBSA --hlq CBSA.DEVELOP --workDir /var/work/temp/BUILD-OUTPUT -
-application CBSA --logEncoding UTF-8 --impactBuild CBSA/application-conf/mandatoryBuild.txt;
cd /var/work/temp/BUILD-OUTPUT; for f in “find . -name "*.zunit.report.log" ; do Xalan -o
$f.xml $f /var/work/extensions/zunit2junit/AzZUZ2330.xsl; done;$DBB_HOME/bin/groovyz -
DBB_DAEMON HOST 127.0.0.1 -DBB_DAEMON_PORT 7380 -
Djava.library.path=$DBB_HOME/lib:/usr/lib/java_runtime64
/var/work/extensions/dbb/Pipeline/PackageBuildOutputs/PackageBuildOutputs.groovy --workDir
/var/work/temp/BUILD-OUTPUT -ae -t package.tar'

post_build:
commands :
-
mkdir -p /var/work/temp/BUILD-OUTPUT/
cd /var/work/temp/BUILD-OUTPUT/
echo "get /var/work/temp/BUILD-OUTPUT/package.tar" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
echo "get /var/work/pipeline/CBSA/AWS-Deployment/appspec.yml" | sftp -i /tmp/id_rsa -P
31772 -o StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
echo "get /var/work/pipeline/CBSA/AWS-Deployment/deployment-sandbox.sh" | sftp -i
/tmp/id_rsa -P 31772 -o StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-
2.compute.internal
mv deployment-sandbox.sh deployment.sh
echo "mget /var/work/temp/BUILD-OUTPUT/*.txt" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
echo "mget /var/work/temp/BUILD-OUTPUT/*.log" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
echo "mget /var/work/temp/BUILD-OUTPUT/*.html" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
echo "mget /var/work/temp/BUILD-OUTPUT/*.json" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
echo "mget /var/work/temp/BUILD-OUTPUT/*.xml" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
for £ in “find . -type f -name "*.*" ; do aws s3 cp $f s3://cbsa-
backend/${PipelineID}/; done;
reports:
zUnit:
files:
- "*.xml"
discard-paths: yes
file-format: JunitXml
base-directory: "/var/work/temp/BUILD-OUTPUT/"
artifacts:
files:
- package.tar
- appspec.yml
- deployment.sh
discard-paths: yes
base-directory: "/var/work/temp/BUILD-OUTPUT/"

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 25/52

This build specification is split into 3 different sections. The pre_build step prepares the environment for
the execution of the build: it downloads a private key to the container using the aws command-line
interface. This private key will be used to connect to the Wazi Sandbox system with the IBMUSER user.
The private key is stored on AWS Secret Manager, and the AWS CodeBuild role was added to the capability
to read from AWS Secret Manager.

The build section contains the commands that will be executed on z/OS through SSH. As the connection
is performed with SSH, the session must be established against the OpenShift worker node that runs the
Wazi Sandbox system. This information can be retrieved from the OpenShift console, by looking at the
pod details for the Wazi Sandbox project.

Here is an example showing such information:

Pods » Pod details

@ cicd-wazisa-82fe-ibm-wazi-d-1f93-0 2 running

Details Metrics YAML Environment Logs Events Terminal

Pod details

Name Status
cicd-wazisa-82fe-ibm-wazi-d-1f93-0 £ Running

Namespace Restart policy

@ wazi-sandbox Always restart

Labels Edit & Active deadline seconds

o . . Not configured
app.kubernetes.io/instance=cicd-wazisandboxsystem-adcd-nazare

app.kubernetes.io/managed-by=ansible

Pod IP
app.kubernetes.io/name=ibm-wazi-developer-sandbox-system 172212230
app.kubernetes.io/part-of=ibm-wazi-developer-sandbox
app.kubernetes.io/version=v2.3. Node
controller-revision-hash=cicd-wazisa-82fe-ibm-wazi-d-1f93-5d5d6c79¢cc ® ip-10-0-35-9l.us-east-2.compute.internal

statefulset.kubernetes.io/pod-name=cicd-wazisa-82fe-ibm-wazi-d-1f93-0

The Wazi Sandbox image is running on node ip-10-0-35-91.us-east-2.compute.internal, as shown on the
bottom-right corner of the above image. This information will be used to set up the SSH connection, and
the SSH port used by the Wazi Sandbox system can be retrieved from the node port configuration:

Service port mapping

Name Port Protocol Pod port or name
zdt-instance- @443 TCP Qo443
controller Q 3243

Node port

ftp (Sl TCP (P

Node port @52'78

sst (S Jewd TCP [P Yowi

Node port @ 31772

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 26/52

The port exposed by Wazi Sandbox to connect with SSH to the Z system is 31772. This information will be
used in the buildspec definition to send SSH and SFTP commands (used in the post_build phase).

The build section contains an SSH command that is chaining several actions:

e The initial commands are used to set up environment variables on z/0S,

e Then, Git commands are used to fetch and pull changes on z/0S from the Git repository,

e The first call to DBB is used to perform an impact build on the changed files,

e The second call to DBB is used to execute a script to package the build output artifacts
(PackageBuildOutputs.groovy script) into an archive.

Depending on your cloning strategy, another option to retrieve the content of the Git repository would
be to clone the repository for each pipeline execution. This decision to use either clone or fetch/pull
commands also depends on the size of the Git repository, which has an impact on the execution elapse
time for the pipeline.

Also, the SSH command described above is using chained commands. For convenience, you may want to
use scripts that group these commands together, for a better readability and maintenance.

The last section, post_build, retrieves artifacts from z/OS using SFTP commands: it first retrieves the
package that was just created during the build phase, along with two files that will be used during the
CodeDeploy phase. The appspec.yml file will define the list of actions to perform during the deployment,
while the deployment.sh script will drive the deployment commands. These files will be described in the
next section of this document.

Also, the build log files (*.txt or *.log files), the DBB Build Report (in JSON and HTML format) and reports
in XML format (produced by the zUnit feature, for instance) are retrieved using SFTP commands. The list
of files that are retrieved can be customized based on users’ needs. These files are then sent to an AWS
53 bucket for archiving purposes, and to help developers understand what happened during the build
phase.

The reports section defines specific processing for some files: in our configuration, JUnit compatible files
(generated from zUnit files) are uploaded as JUnit reports, so developers can check for Unit Testing trends
on AWS through AWS CodeBuild’s Report Groups feature. Finally, the artifacts section defines which
artifacts should be packaged together into a ZIP file that will be stored on a specific AWS S3 bucket (the
AWS S3 bucket to use during the pipeline be defined later in the pipeline definition, in AWS CodePipeline).

3.2 Using AWS CodeDeploy to deploy z/OS artifacts

In our setup, the next building block leveraged in the CI/CD pipeline is the AWS CodeDeploy service. The
purpose of this service is to execute deployment actions.

These deployment tasks are defined in a deployment specification file, called appspec.yml, that must be
provided in the package that contains the artifacts to deploy.

AWS CodeDeploy proposes several options to run the deployment actions: it can either use an existing
image on AWS EC2, a serverless process using AWS Lambda or a container on AWS ECS. In our
configuration, we chose to leverage an existing EC2 image of our infrastructure, which was already hosting
the DBB 1.1.3 WebApp server. Thus, when creating the application in the AWS CodeDeploy service, the
Compute platform option chosen is EC2/on-premises:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 27/52

Create application
Application configuration

Application name
Enter an application name

CBSA

100 character limit

Compute platform
Choose a compute platform

EC2/0n-premises v

To be able to use the EC2 instance to deploy our Z artifacts, a few steps must be performed on the EC2
environment.

3.2.1 |Installing and configuring AWS CodeDeploy agent

The first action is to install an AWS CodeDeploy agent. This agent will connect to the AWS infrastructure
and execute scripts as defined in the deployment specification. The AWS documentation?? provides the
necessary information to install and register the agent to your AWS account. Also, to be able to deploy,
the machine running the AWS CodeDeploy agent needs to be assigned an IAM that has the necessary
credentials. This AWS documentation page® provides more information on how to setup these
permissions. After assigning the IAM role to the instance, the AWS CodeDeploy agent may need to be
restarted, with the systemctl restart codedeploy-agent command.

22 https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent-operations.html
2 https://docs.aws.amazon.com/codedeploy/latest/userguide/security-iam.html

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 28/52

https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent-operations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/security-iam.html

After creating the application in the AWS CodeDeploy service, the next phase is to create a deployment
group, which defines the specifications for the deployment process. After providing a name for the
deployment group, the main step is to define which EC2 instances are used for the deployment. Tags can
be used to identify which EC2 instance should be used. We are specifying those instances with the tag
DeploymentMachine.

Environment configuration

Select any combination of Amazon EC2 Auto Scaling groups, Amazon EC2 instances, and on-premises instances to add
to this deployment

Amazon EC2 Auto Scaling groups

Amazon EC2 instances
0 unigue matched instances. Click here for details [4

You can add up to three groups of tags for EC2 instances to this deployment group.
One tag group: Any instance identified by the tag group will be deployed to.
Multiple tag groups: Only instances identified by all the tag groups will be deployed to.

ag group

[le]

Key Value - optional

Q, Capability X Q. DeploymentMachine X

All the other properties of the Deployment group are kept by default, and the Load balancing option is
disabled.

We added the same tag to our EC2 instance when editing its properties:

Instance: i-089f05b4e52404f10 (DBB 1.1.3 WebApp Server - New OCP Cluster)

Details Security Networking Storage Status checks Monitoring Tags
Tags
Q
Key | value
Capability DeploymentMachine
Name DBB 1.1.3 WebApp Server - New OCP Cluster

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 29/52

3.2.2 Configuring the deployment tasks

Later, when including the deployment step in the AWS CodePipeline definition, the location of the AWS
S3 bucket that stores the package for deployment needs to be specified. Within this package, it is expected
to find an appspec.yml file, that describes the different actions to perform. Here is an example of the
appspec.yml file used in our configuration:

: /var/work/deploy/
: OVERWRITE

: /var/work/deploy/
: root
root
2 777

: deployment.sh
root
: 1800

The files section of this sample file describes the destination path where the package should be copied
and expanded on the EC2 machine: in our configuration, the package will be expanded in the
/war/work/deploy folder. Commands to execute are described in the hooks section. In our configuration,
the Afterinstall action is performed by executing the deployment.sh script, which is also part of the ZIP
package (created during the build phase).

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 30/52

We recommend to store both the appspec.yml file and the deployment.sh script in a specific subfolder of
our application’s Git repository:

v CHE (WORKSPACE)
v 6

> B3 theia

> Blaarfiles

> Elautomation

~ EJAWS-Deployment
appspec.yml
deployment-integration_sh

deployment-sandbox sh

The deployment.sh script contains commands to deploy Z artifacts to a target Z system, using Ansible
playbooks. Depending on the infrastructure, the tooling and deployment strategy, any other solution can
be chosen for deploying Z artifacts to the target Z system.

3.3 Defining the AWS CodePipeline orchestration
The AWS CodePipeline service in AWS is used to orchestrate multiple steps for a complete Cl/CD pipeline.

A pipeline in AWS typically is composed of three major steps: Source, Build and Deploy. To integrate these
steps into a new pipeline, the AWS CodeBuild and AWS CodeDeploy configurations we previously defined
will be leveraged.

The first action is to create a new pipeline in AWS CodePipeline. After specifying a name for this pipeline,
you can choose to create a new Service Role if none exists for your account:

Pipeline settings

Pipeline name
Enter the pipeline name. You cannot edit the pipeline name after it is created.

CBSA-Pipeline-Sandbox

Mo more than 100 characters

Service role

New service role © Existing service role
Create a service role in your account Choose an existing service role from your account
Role ARN

Q, arn:aws:iam::997407628159:role/service-role/AWSCodePipelineServiceRole-u: X

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 31/52

For the Artifact store, we specify the existing AWS S3 bucket, which we had configured in the previous
step. For the Encryption key, the default value will be used.

v Advanced settings

Artifact store

Default location

Use the default artifact store (Amazon 53 codepipeline-us-
east-2-553500673486) designated in the same region and

© Custom location

Choose an existing S3 location from your account in the
same region and account as your pipeline

account as your pipeline

Bucket

Q. cbsa-backend

Encryption key

O Default AWS Managed Key
Use the AWS managed customer master key for
CodePipeline in your account to encrypt the data in the
artifact store.

Customer Managed Key

To encrypt the data in the artifact store under an AWS KMS
customer managed key, specify the key ID, key ARN, or alias
ARN.

The next panel lets you choose the configuration for the first step of the pipeline, the Source stage. In the
Source provider drop-down list, the AWS CodeCommit service will be used, while choosing the Git
repository that hosts our source files. The Development branch will be the branch used as source: every
change to this branch will then trigger the execution of this CI/CD pipeline:

Source

Source provider

This is where you stored your input artifacts for your pipeline. Choose the provider and then provide the connection details.

AWS CodeCommit

Repository name

v

Choose a repository that you have already created where you have pushed your source code.

Q, CBSA
Branch name
Choose a branch of the repository

Q, Development

Change detection options

X

Choose a detection mode to automatically start your pipeline when a change occurs in the source code.

© Amazon CloudWatch Events (recommended)

Use Amazon CloudWatch Events to automatically start my

pipeline when a change occurs

Output artifact format
Choose the output artifact format.

© CodePipeline default

AWS CodePipeline uses the default zip format for artifacts

in the pipeline. Does not include git metadata about the
repository.

Default values are left for the remaining options.

AWS CodePipeline
Use AWS CodePipeline to check periodically for changes

Full clone

AWS CodePipeline passes metadata about the repository
that allows subsequent actions to do a full git clone. Only
supported for AWS CodeBuild actions.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 32/52

3.3.1 Integrating the build specification

In the next phase, we will configure the Build step of the pipeline. AWS CodeBuild will be selected as the
provider for this action. Select the Build project that we previously created.

Environment variables are also provided for the execution of the Build phase: in our setup, the PipelinelD
environment variable is defined with the value #{codepipeline.PipelineExecutionId}, which will be
leveraged during the execution of the build step (See section 3.1 Configuring AWS CodeBuild to build
mainframe applications).

Build - optional

Build provider
This is the tool of your build project. Provide build artifact details like operating system, build spec file, and output file names.

AWS CodeBuild v
Region
US East (Ohio) v

Project name

Choose a build project that you have already created in the AWS CodeBuild console. Or create a build project in the AWS CodeBuild console
and then return to this task.

Q, CBSA-Build-Sandbox X | or Create project [4

Environment variables - optional

Choose the key, value, and type for your CodeBuild environment variables. In the value field, you can reference variables generated by
CodePipeline. Learn more [4

Name Value Type
PipelinelD ine.PipelineExecutionid} Plaintext v

Add environment variable

Build type
O single build Batch build
Triggers a single build. Triggers multiple builds as a single

execution.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 33/52

3.3.2 Integrating the deployment configuration
The Deploy phase is the last phase of the pipeline.

Select AWS CodeDeploy as the provider for this action, which will allow you to pick the existing application
name CBSA-backend and the deployment group Deployment-Sandbox to specify the target runtime
environment:

Deploy - optional

Deploy provider

Choose how you deploy to instances. Choose the provider, and then provide the configuration details for that provider.
AWS CodeDeploy v

Region
US East (Ohio) v

Application name
Choose an application that you have already created in the AWS CodeDeploy console. Or create an application in the AWS CodeDeploy
console and then return to this task.

Q, CBSA-backend X

Deployment group
Choose a deployment group that you have already created in the AWS CodeDeploy console. Or create a deployment group in the AWS
CodeDeploy console and then return to this task.

Q, Deployment-Sandbox X

3.3.3 Verifying the pipeline execution

After the creation of the pipeline, it will be automatically executed for the first time. The Source step
should execute successfully, continuing with the Build phase:

e Build n progress
Pipeline execution ID: d4d4cafe-f80d-4ecf-af65-15911dec6269

Build ®
AWS CodeBuild

@ In progress

- Jan 31, 2023 5:25 PM

(UTC+1:00)
Details

5d5ad4f3 Source: fixed the call to transfer

The Details link is a convenient way to monitor the execution of the Build step, executing actions on the
Z Sandbox system.

The last phase of the pipeline is the deployment on the target Wazi Sandbox system:

(@] Deploy Succeeded

Pipeline execution ID: cd80d48f-33da-40ab-87e2-a875985fcd5a

Deploy @
AWS CodeDeploy

@ Succeeded - 1 day ago
Details

69d3eccO Source: Changed DPAYAPI

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 34/52

If the deployment went successfully, the pipeline should appear complete.

3.4 Asample developer workflow

To demonstrate the execution of the pipeline we just configured, a simple change can be implemented
using Wazi for DevSpaces. This change should trigger the pipeline execution in AWS CodePipeline.

3.4.1 Implementing a change with Wazi for DevSpaces

The purpose of this change is to verify the correct configuration of the different components of the setup.
Hence, the change we will implement is very simple and is not aiming to jeopardize the build of the
artifact. We will just insert a comment (on line 13 here) in a Cobol program, called DPAYAPI, that belongs
to the CBSA Git repository hosted on AWS CodeCommit.

EXPLORER DPAYAPLcbl X
~ OPEN EDITORS > c
oDPAYAPI cbl C© bo A CICS,N 1, NSYMBOL (NAT
CICS('SP,EDF,DLI")

SQL

The change is implemented on the Development branch of our CBSA Git repository. The next step is to
commit the change on our local Development branch, by providing a commit message:

SOURCE CONTROL: GIT

Implemenied a simple change|

~ STAGED CHANGES
DPAYAPI.cbl C

~ CHANGES

The bottom-left icon then shows a change on the Development branch is waiting to be pushed to the AWS
CodeCommit repository. Clicking on the highlighted button below will push the changes to the
Development branch on the central Git repository:

¥ Development* & 01 1t

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 35/52

3.4.2 Monitoring the pipeline execution in AWS CodePipeline

In AWS CodePipeline, the pipeline previously configured should be now executing:

Developer Tools)4
CodePipeline

p Source * CodeCommit

p Artifacts e CodeArtifact

» Build « CodeBuild

p Deploy » CodeDeploy

w Pipeline = CodePipeline
Getting started

Pipelines

Developer Tools CodePipeline

Pipelines info

Q

Name

Pipelines

Most recent execution

CBSA-Pipeline-
Sandbox-New

© In progress

CBSA-Pipeline-
Integration

Succeeded

Clicking on this pipeline brings you to the execution details, where you can see the Build phase currently

being executed:

CBSA-Pipeline-Sandbox-New

®@ Source succeeded
Pipeline execution I1D: d7deccdc-78a5-45fc-abef-1F95281770cf

Source @

AWS CodeCommit

@ Succeeded - Just now
68c800f9

68c809f9 Source: Implemented a simple change

l Disable transition

@ Build n progress

Pipeline execution 1D: d7deccdc-78a5-45fc-abef-1f95281770cf

Build ®
AWS CodeBuild

@ In progress - Just now

68c809f9 Source: Implemented a simple change

| £ Notify ¥ || Edit H Stop execution |

On the Details page, you get more information about the build process that is executed:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack

Page 36/52

CBSA-Build-Sandbox:373b1c00-3b57-4592-97d7-d4c5bda1fa45

Build status

Status Initiator Build ARN Resolved source version
In progress codepipeline/CBSA-Pipeline-Sandbox-New arm:aws:codebuild:us- 68cB09f97cdB68c3515e1dcf4fed9e11d3a7d

east-2:997407628159:build /CBSA-Build- Sbe
Sandbox:373b1c00-3b57-4592-97d7-
d4c5hdalfads

Start time End time Build number

Mar 2, 2023 1:58 PM (UTC+1:00) - 43

Build logs Phase details Reports Environment variables Build details Resource utilization

Showing the last 75 lines of the build log. View entire log

Show previous logs

Container] 2023/03/82
Container] 2823/83/82
Container] 2823/83/82
Container] 2823/@3/82
Container] 2823/@3/82
Container] 2823/@3/82
Container] 2823/@3/82

[Waiting for agent ping
[

[

[

[

[

[

[Container] 2823/03/82
[

[

[

[

[

[

[

Waiting for DOWNLOAD SOURCE
Phase is DOWNLOAD_SOURCE

CODEBUILD_SRC_DIR=/codebuild/output/src947562173/src

¥amML location is /cedebuild/readonly/buildspec.yml

Setting HTTP client timeout to higher timeout for S3 source

Processing environment variables

Expanded report group name zUnit

Found report group name zUnit

adding prefix CBSA-Build-Sandbox for report group name zUnit

No runtime version selected in buildspec.

Moving to directory fcodebuild/output/src947562173/src

Configuring ssm agent with target id: codebuild:373b1c@@-3b57-4592-97d7-dacshdalfads
Successfully updated ssm agent configuration

Registering with agent

w0 oo

Container] 2823/@3/@2
Container] 2823/@3/@2
Container] 2823/83/82
Container] 2823/83/82
Container] 2823/83/82
Container] 2823/83/82
Container] 2823/83/82

¥
®

v
]

This page allows you to monitor the execution of the build phase, which leverages DBB running on the
Wazi Sandbox system. Clicking on the Tail logs button shows the execution log being updated live:

Build logs

+ In progress Start time: 2 minutes ago

4 e s s

JAVA_HOME=/usr/lpp/java/]18.0_64

_CEE_RUNOPTS=FILETAG(AUTOCVT ,AUTOTAG) POSIX(ON)

GIT_TEMPLATE_DIR=/usr/lpp/Rocket/rsusr/ported/share/git-core/templates

XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5 8

DBE_CONF=/usr/lpp/IBM/dbb/conf

SHLVL=1

HOME=/u/ibmuser

HALANCROOT=/usr/1lpp/ixm/IBM/xs1lt4c-1_12

_TAG REDIR OUT=txt

LOGNAME=IBMUSER

S5H_CONNECTION=172.21.2.1 14481 172.26.1.2 22

LC_CTYPE=C.UTF-8

DBE_HOME=/usr/1pp/IBM/dbb

_=/binfenv

Fetching origin

remote:

remote: Counting objects: 5

67 remote: Counting objects: 5

68 remote: Counting objects: 5, done.

From https://git-codecommit.us-east-2.amazonaws.com/vl/repos/CBSA
7085332, .68c809f Development -» origin/Development

Already on 'Development’

Your branch is behind 'origin/Development’ by 1 commit, and can be fast-forwarded.
(use "git pull” to update your local branch)

4 Fetching origin

75 Updating 78@5332..68cse9f

6 Fast-forward

CBSA/cobol/DPAYAPI.cbl | 2 +-

1 file changed, 1 insertiocn(+), 1 deleticn(-)

wow
@

[

W
I

1
o

ok e

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 37/52

When the build phase is done, the pipeline executes the Deploy phase:

@ Build succeeded

Build ®
AWS CodeBuild

@ Succeeded - Just now
Details

68c809f9 Source: Implemented a simple change

Pipeline execution I1D: d7deccdc-78a5-45fc-abef-1f95281770cf

Disable transition

@ DEPLO}' In progress

Deploy @
AWS CodeDeploy

@ In progress - Just now

68c809f9 Source: Implemented a simple change

Pipeline execution I1D: d7deccdc-78a5-45fc-abef-1f95281770cf

Via the Details link, you can browse information about the deployment being processed:

Deployment details

Application
CBSA-backend

Deployment configuration
CodeDeployDefault.AllAtOnce

Deployment description

Deployment ID
d-ZAPENEAHS

Deployment group
Deployment-Sandbox

Status

¢ In progress

Initiated by

User action

Revision details

Revision location

Revision created

Revision description

s3:/ fcbsa-backend/CBSA-Pipeline-Sandbo/BuildArtif Just now Application revision registered by Deployment ID: d-ZAP8NBAHS
/QI3WfCP?versionld=s9aBQUxIVSnJOMsqu54DBQqCyRaV2eAd&
eTag=463c097aa028abe5aed3a97103326eb0
Deployment lifecycle events
Q 1 @

Instance ID Duration Status Most recent event Events Start time End time
i-089f05b4e52404110 [5 - C In progress Afterlnstall Mar 2, 2023 2:06 PM (UTC+1:00) -

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 38/52

You can then click on the View events link to check the different steps of the deployment process:

Revision details

Revision location Revision created

53://cbsa-backend/CBSA-Pipeline-Sandbo/BuildArtif Just now
JQI3WFCP?versionld=s9aBQUxIVSnJOMsqu54DBQqCyRaV2eAd&
eTag=463c097aa028abe5a3ed3397103326eb0

Revision description

Application revision registered by Deployment ID: d-ZAPSBN6AHS

Event Duration Status Error code Start time End time

ApplicationStop less than one second @ Succeeded - Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:06 PM (UTC+1:00)

DownloadBundle less than one second © Succeeded - Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:06 PM (UTC+1:00)

Beforelnstall less than one second @ Succeeded R Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:06 PM (UTC+1:00)
Install less than one second @© Succeeded R Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:06 PM (UTC+1:00)
Afterinstall - M In progress - Mar 2, 2023 2:06 PM (UTC+1:00) -
ApplicationStart - @ Pending - - -
ValidateService - @ Pending - - -

After a short period of time, the deployment should be completed, and the application successfully
deployed:

Revision details

Revision location Revision created Revision description

$3:/ fcbsa-backend/CBSA-Pipeline-Sandbo/BuildArtif 2 minutes ago Application revision regi by D 1t 1D: d-ZAPENGAH
/QI3WfCP2versionld=s9aBQUxIVSnJOMsqu54DBQqCyRaV2eAda

eTag=463c097aa028abe5aed3a87103326eb0

Event Duration Status Error code Start time End time

ApplicationStop less than one second © Succeeded - Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:06 PM (UTC+1:00)

DownloadBundle

less than one second

@ succeeded

Mar 2, 2023 2:06 PM (UTC+1:00)

Mar 2, 2023 2:06 PM (UTC+1:00)

Beforelnstall less than one second @ Succeeded - Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:06 PM (UTC+1:00)
Install less than one second © Succeeded - Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:06 PM (UTC+1:00)
Afterinstall 2 minutes 54 seconds @ Succeeded - Mar 2, 2023 2:06 PM (UTC+1:00) Mar 2, 2023 2:09 PM (UTC+1:00)

ApplicationStart

ValidateService

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack

less than one second

less than one second

@ Succeeded

@ Succeeded

Mar 2, 2023 2:09 PM (UTC+1:00)

Mar 2, 2023 2:09 PM (UTC+1:00)

Mar 2, 2023 2:09 PM (UTC+1:00)

Mar 2, 2023 2:09 PM (UTC+1:00)

Page 39/52

3.4.3 Browsing the pipeline artifacts and reports

If zUnit artifacts were generated as part of the pipeline and exported as test reports (See section 3.1
Configuring AWS CodeBuild to build mainframe applications), the test reports can be visualized in AWS
CodeBuild, under the Report groups submenu item.

Developer Tools X Trends
CodeBuild
Select up to the number of reports 50 v
» Source » CodeCommit
Pass rate Average report duration Average number of test cases run Number of reparts
» Artfacts = CodeAvtfact 100% 0.43346931578947373 1 20
w Build » CodeBuild seconds

Getting started

Build projects Test report failure and errors Duration and total tests run
Build history
Repart groups [Durion secons
Report group
Settings
Report history.

Accaunt metrics

» Deploy » CodeDeploy

» Pipeline = CodePipeline

» Settings

Q Gotores
ED Feedback

s e e nawen

As build log files and artifacts are also stored in an AWS S3 bucket, they can also be browsed, for

traceability or debugging purposes:

Amazon S3 X Objects (12)
Objects are the fundamental entities stored in Amazon $3. You can use Amazon $3 inventory [to get a list of all objects in your bucket. For athers to access your objects, you'll need to explicitly grant them
permissions. Leam more [

Buckets

Access Points

Object Lambda Access Points
Multi-Region Access Paints
Batch Operations

1AM Access Analyzer for S3

Block Public Access settings for
this account

4

Storage Lens
Dashboards

AWS Organizations settings

Feature spotlight

» AWS Marketplace for S3

<]

Q_ Find objects by prefix

Name v Type ¢
[® BNKMENU.zunit.report.log.xml xml
[BuildReport.json json
R |
[TBNKMENU.cobol.log log
[BNKMENU.zunitreport.log log
[DPAYAPIcobol.log log
[BNKMENU.zunitjcllog log
[BNKMENU.cobol.log log
[buildlist.txt txt
[deployment.sh sh
B appspecyml yml
B package.tar tar

Actions ¥ | | Create folder

O Show versions

Last modified v Size v
March 2, 2023, 14:05:32 (UTC+01:00) 38208
March 2, 2023, 14:05:31 (UTC+01:00) 8.3KB
March 2, 2023, 14:05:30 (UTC+01:00) 19.2KB
March 2, 2023, 14:05:29 (UTC+01:00) 85.5KB
March 2, 2023, 14:05:28 (UTC+01:00) 93208
March 2, 2023, 14:05:28 (UTC+01:00) 64.4 KB
March 2, 2023, 14:05:27 (UTC+01:00) 25.5KB
March 2, 2023, 14:05:26 (UTC+01:00) 115.4 KB
March 2, 2023, 14:05:26 (UTC+01:00) 10108
March 2, 2023, 14:05:25 (UTC+01:00) 88s8.0B
March 2, 2023, 14:05:24 (UTC+01:00) 2.8KB
March 2, 2023, 14:05:23 (UTC+01:00) 126.0KB

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack

1 @

Storage class -

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

Page 40/52

For instance, the HTML version of the DBB Build Report can be consulted by clicking on it:

Main Content

Build Report

Toolkit Version:

Version: 113

Build: 151
Date: 28-Feb-2022 17:26:26
Build Summary

Number of files being built: 4

File Commands RC Data Sets Outputs Deploy Type Logs
IGYCRGTL 4 CBSA DEVELOP.TEST.COBOL(TBNKMENU) TBNKMENU.cobol log
1 | CBSAltestcase/TBNKMENU.chl
IEWBLINK 0 CBSA DEVELOPTESTLOAD(TBNKMENU) = ZUNIT-TESTCASE
IGYCRCTL 0 CBSA DEVELOP.COBOL(BNKMENU) BNKMENU.cobol log
2 CBSAicobol/BNKMENU.cbl
how Dependencies
IEWBLINK o CBSA DEVELOP.LOAD(BNKMENU) CICSLOAD
IGYCRCTL 4 CBSA DEVELOP.COBOL(DPAYAPI) CBSA DEVELOP.DBRM(DPAYAPI) DBRM DPAYAP! cobal log
5 | CBSAlcobolIDPAYAPL.cbl
how Dependencies
IEWBLINK 0 CBSA DEVELOP.LOAD(DPAYAPI) CICSLOAD

4 | undefined Submit JCL RUNZUNIT | 0

With all the information collected from the pipeline and stored on the AWS Cloud platform, the
developers have access to all the required knowledge when building and diagnosing issues with the
different stages of the CI/CD pipeline.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 41/52

4 Building a CI/CD pipeline with Azure DevOps and IBM Z & Cloud
Modernization Stack

This section outlines the steps needed to configure a Cl/CD process using IBM Z & Cloud Modernization
Stack?* with Wazi Dev Spaces and Wazi Sandbox on Microsoft Azure and its DevOps services (ADO).

To start, begin with the steps defined in sections 1 and 2 of this document. They are common across all
IBM supported cloud providers including Azure, which defines a foundation that includes:

o Administrative steps to install and configure:
o A RedHat OpenShift Cluster (OCP) in a Cloud environment.
o IBM’s Dependency Based Build (DBB) and its supporting utility scripts.
o A Git Repository structure that is compatible with DBB build frameworks like zAppBuild.
o Support for ZUnit and the IBM testing framework.
e Developer Tools are defined in the section titled ”Setting up Wazi for Dev Spaces and Wazi Analyze”.
It describes the developer experience using:
o Wazi DevSpaces
o Wazi Sandbox
o Wazi Analyze
o ZUnit

In addition to the foundational services defined above, some administrative steps specific to defining an
Azure DevOps CI/CD will be needed. See IBM’s “Getting Started” reference for more details - Azure
DevOps and IBM Dependency Based Build Integration

This section assumes prior knowledge of DevOps concepts with IBM DBB on z/0S, Azure DevOps, z/0S
systems knowledge and Cloud Administration.

4.1 Azure DevOps and z/OS integration

As defined in the “Getting Started” reference above, a basic®® CI/CD process runs a build, publish, and
deploy workflow on a target z/OS environment. However, in this document, an alternative publishing and
deployment process is provided that uses ADO Artifacts and ADO Release with IBM’s Wazi Deploy tool.

The “Getting Started” reference also describes how to define an ADO Agent with SSH connectivity to a
z/0S host. Those same steps can be applied to connecting to a virtual z/0OS like a Wazi Sandbox. In this
example, an Azure Ubuntu VM was provisioned and configured as a self-hosted agent on the same subnet
as a provisioned Red Hat Open Shift Container Platform (OCP). Also, an ADO SSH Service Connection was
defined with a RACF User’s SSH key, IP and port of the Wazi Sandbox. In the example below, the SSH
service is called wazi-sandbox:

24 Microsoft Azure Marketplace
25 More mature pipelines may include other tasks like quality gates, peer-review, approvals or more.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 42/52

https://www.ibm.com/support/pages/node/6422813
https://www.ibm.com/support/pages/node/6422813
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/ibm-usa-ny-armonk-hq-6275750-ibmcloud-asperia.ibm-z-and-cloud-modernization-stack?tab=Overview

| 0Nz
e marmy or I S0CnS: o the neohs TCHine.

[Post Pramiber [optianal)

I!'!lSD
PO MO £ TP AEPTORE URCTE 1D wht 154 CONTTING.

4.2 Creating the Git repository

Starting with a new ADO Project as shown below, a repository configured for DBB is created. ADO supports
all major Git providers. This example uses Azure Repos.

O IBM-Azure-Demo-Sandbox / Azure-zmodStack-demo / Repos / Files ; 4 CICS-Bank-Sample-Application ™

. ? @ automation SIEEIn = § @R

+ ? @ AWSs-Deployment CBSA

. 2 @ Azure-Demo Contents History

> = buildicl
a v i CBSA @ Committed ¥ b46bc712: Deleted application-conf-old
> i application-conf

¢ > @ asm MName T Last change
& > @ bms “ application-conf Wednesday
& > @ cobol @ asm May 6

o > @ copylib “ bms May 6
2 > i linkedit # cobol 3hago

. 4 > 0 testcase “ copylib May 6
. » @ testcase-data @ linkedit May &
- 7 testefg “ testcase May 6

@ > @ testplayback @ testcase-data May 6

> > @ comibm.cics.cipbankLiber... @ testcfg May 6

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 43/52

4.3 Defining the Cl pipeline in Azure DevOps

The Cl pipeline example below illustrates the clone, build and publishing tasks?®.
The first 3 steps are SSH tasks that are securely executed on the Wazi Sandbox system deployed in

J o-Sandbox / Azure-zmodstac Pipelines
& - > Azure-zmodStack-demo-Cl
+
Tasks Varizbles Triggers Options History
Pipeline
= Get
od Cic

Azure Cloud Agent VM to Wazi Sandbox over S5H

Clone on Wazi Sandbox's Unix System Service ...
" Pl Build with DBB

Package DBB Artifacts

F ﬂ Stage Package on Agent

E Publish DBB Package in an Azure Artifact feed

- s - @
= Ssummary [> Quete .- v

Name *

Azure-zmodStack-demo-Cl

Agent pool (D | Poolinformation | Manage t2

ado-wazi-agent “ O

Parameters ©

joesn't have any pipeline parameters. Create them to share the most important settings between tasks and change them in one

Learn more 12

For example, the SSH task below references an SSH Service Connection (endpoint) and a command.
In this case, the endpoint is to a Wazi Sandbox and the command is a Git Clone shell script. Variable

definitions and sample shell

Tasks Variables Triggers Options History

Pipeline

== Get sources
39 CICS Bank-Sample-Apica

Azure Cloud Agent VM to Wazi Sandbox over SSH

Clone on Wazi Sandbox’s Unix System Service - using ...
<5

Build with DBB
Bl

Package DBB Artifacts
< .

v

E Stage Package on Agent

E Publish DBB Package in an Azure Artifact feed

scripts are provided in the “Getting Started” reference.

= Summary [Queue ...

SSH @ @ Link settings [8
Task version | 0.x v
Display name *

Clone on Wazi Sandbox’s Unix System Service - using myWazi

SSH service connection® (@ | Manage 2

‘ warzi-sandbox

Run* Q@
(® Commands Script File nline Seript
Commands* ()

CBSA Repo
S(myScriptsHome)/seripts/Cl/Clone2.sh §(myWorkDir) S(myWorkSpace) §(myRepo) - §(Build.SourceBranch)

Achancad

The package task runs an SSH shell command to launch the DBB groovy utility called
PackageBuildOutputs.groovy (see “Retrieving the Build framework” section above). The shell script
takes one argument passed by the pipeline that points to the build step’s DBB artifacts folder known

as the DBB --workdir argument.

In this example, the groovy script and its shell launcher are placed in a subfolder within a cloned copy
of dbb-zappbuild. But they can be stored on any accessible sandbox Unix Filesystem folder.

26 Tasks have been split for illustration purposes. But can be combined as needed.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack

Page 44/52

The reference to . /etc/profile in line 2 is used to initialize the DBB environment variables used to
launch the script under the DBB groovyz utility. The arguments passed to the script include:

[SR T O TR =

o

&
& Mmoo G

e A DBB Daemon host IP and its port which is described in the DBB Users Guide?’.

e The Spackage variable with the location of the packaging groovy script (line 3).

e --workDir is the working directory for zAppBuild ($1).

e The -age parameter is required to add extensions to each artifact that is packaged

e -tisthe name for the package file. This contains all objects to be deployed like load modules,
CICS Maps, DB2 DBRM’s and whatever items are needed by the application.

MNew version of packing script {2823) for Azure {q
. fetc/profile
package=/u/ibmuser/dbb-zappbuild/scripts/utilities /PackageBuildoutputs. groowvy

Brho PEFE R R R R R R R R R R R AR R R R R SRR R AR IR RERERERE LN

echo "** started: Package-Create.sh on HOST/USER: %(uname -Ia) FUSER"
echo "** WorkDir:"™ %1
echo "** Package Script:" %package

groovyz -DEE_DAEMON_HOST 127.8.8.1 -DEE_DAEMON_PORT 7280 $package --workDir $1 -aze -t package.tar

Stage is a bash task that runs SFTP on the Agent as shown below. The inline script performs the following

steps:

Changes directory to the Agent’s Staging Directory of the current run,
Makes a new directory to store DBB logs and HTML report,

o Creates afile, called ftpBat, to drive the SFTP commands that includes the application package
and DBB logs.

Pipeline

& Get sources

Azure Cloud Agent VM to Wazi Sandbox over SSH

Clone on Wazi Sandbox’s Unix System Service - using my

Build with DBB O
Package DBB Artifacts 2

m Stage Artifacts on Agent oi

E Publish DBB Package in an Azure Artifact feed

' Publish DBB logs in pipeline drop

27 Note always refence the latest document version - IBM Dependency Based Build 2.0.x - IBM Documentation

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 45/52

https://www.ibm.com/docs/en/dbb/2.0.0

Publish is a Universal Package task with:

o The command Publish,

o The default system PATH of the Agent’s Staging Directory of the prior step,
o The pre-defined Feed name - in this case, it’s called Azure-IBM-ModStack-Feed,
o A package name - in this case, it is the name of the sample application.

Ll Azure-zmodStack-demo-Cl
;
Tasks Variables Triggers Options History
Pipeline
= Get sources
. 3 % CICS-Eank-Sample-Application
ey
= Azure Cloud Agent VM to Wazi Sandbox over SSH 4+
= D
o Clone on Wazi Sandbox's Unix System Service
[y Build with DBB
- Package DEB Artifacts
B [m Stage Package on Agent
= Publ Package in an Azure Artifact feed Qi
@

= summey D Queve - 2

Universal packages @ @ Link settings [ViewvaML [i] Remove

Taskcversion 0.* ~

Display name *

Publish DBB Package in an Azure Artifact feed
Command= ®
PuBlish ~
Path to file(s) to publish* (D
§(Build. ArtifactStagingDirectory)
Feed & package details ~

Feedlocation* ()

@ Trisorg
Destination Feed* @

Azure-IBM-ModStack-Feed v O

Packagename* ()
cbsa_package ~ O
Version®
@ Nextmino
Deseription (D

Package far the CBSA 205 Application v

An optional Publish build artifacts task can be added to save DBB logs. This task uses the Agent’s default
working directory to store the logs of the Build step in a folder called dbb-logs in this example. Provide
an Artifact name like DBB Logs and use Azure Pipelines as the location:

Azure Cloud Agent VM to Wazi Sandbox over SSH

& Runon agent

A

SSH S

P Build with DBB

ssH [

Package DBB Artifacts

w WV

o
x

Stage Artifacts on Agent

Publish DBB Package in an Azure Artifact feed

Universal packages

Publish DBB logs in pipeline drop

Publish build artifacts

= [E

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack

Clone on Wazi Sandbox's Unix System Service -

} Display name *

Publish DEB logs in pipeline drop

using my...
Path to publish * O]
$(Build.ArtifactStagingDirectory)/dbb-logs
Artifact name * ()

DBB Logs
Artifact publish location * ®

Azure Pipelines

Advanced v

Control Options v

Outout Variables

Page 46/52

When the job is complete, the logs are available from the publish link in its summary page.

@ #101 + Updated AAADEMO.cbl

s Azure-zmodStack-demo-Cl

@ This run is being retained as one of 3 recent runs by Develop (Branch).

View retention leases
Summary Releases

Triggered by@ Nelson.Lopez1

Repository and version

View change
Time started ai Re Tests and coverage
© CICS-Bank-Sample-Application © Today at 9:11 AM 0 work items & Getstarted
& Develop ¢ e35c7224 @ 1m 16s S 1 published; 1 consumed
Jobs
Name Status Duration
@ Azure Cloud Agent VM to Wazi Sandbox over SSH

Success 9 1m 11s

The contents of the published artifacts:

« Artifacts

Published Consumed

I DBB Logs 17 KB
N AAADEMO.cobollog 12K8
Y BuildReporthtmi SKE

A sample COBOL compiler and Linkedit SYSPRINT:

PP 5655-EC6 IBM Enterprise COBOL for z/0S 6.4.8 P220825

Date @5/27/2023

Time 08:13:085
Invocation parameters:

Page 1
LIB

IGY054099-1 The "LIB" option specification is no longer required. COBOL library processing is always in effect.
Options in effect:
NOADATA
ADV
AFP(NOVOLATILE)
QUOTE
ARCH(1@)
ARITH(COMPAT)
NOAWO
NOBLOCK®
BUFSIZE(40896)
NOCICS
CODEPAGE (1148)

Ln1, Col1

Unix (LF)

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 47/52

A sample DBB BuildReport.html:

Build Report

Toolkit Version:

Version: 2.0.0

Build: 113

Date: 06-Dec-2022 17:13:58
Build Summary

Number of files being built: 1

File Commands RC Options

CBSA/cobol/AAADEMO.cbl

¥ Dependencies
1

IGYCRCTL | 0 us

+ IBMUSER PIPELINE.OBJ(ARADEMO) e o0 o

Data Sets

IBMUSER PIPELINE.COBOL(AAADEMO)

0 MAP.RENT COMPAT(PM5),SSI=e35c7224

4.4 Creating the Release pipeline (CD)

Outputs

IBMUSER PIPELINE OBJ(AAADEMO)

Deploy Type | Logs

AAADEMOQ cobol log

IBMUSER PIPELINE LOAD(AAADEMO) = LOAD

An ADO Release pipeline defines the steps to download a package and deploy it to a target z/0OS Wazi
Sandbox as shown in the example below. This documentation? describes how to define a release.

Releases are Continuous Deployment processes that define how packages are deployed in each Stage.
Releases can be triggered automatically or manually via an approval policy. They are associated with the
Artifact feed of a related application Cl pipeline.

Stages consist of tasks to deploy a package to a target environment. In this example, a stage called Dev
has several tasks to deploy a DBB package to a Wazi sandbox. Stages are normally chained from Dev to
QA to Prod (although not shown in this example). Packages can be promoted to upper stages with the

proper approvals and quality gates.

) Azure DevOps |5M-Azure-Demo-Sandbox Azure-zmodStack-demo

B Azure-zmoastack-demo " New release pipeline

& overven Pipeline Varizbles History
Repos
Release
o Pielines
e Pipelines

Continuous deployment

& Environments r @ NelsonLopezt

B Releases

W% Library .
4

= 5]
_Azure-zmodStack... (@
72

Task groups

T Deployment groups

F' Artifacts

Release-88 v

—+ Deploy) Refresh

Stages

Dev

Edit

Release-88

Summary Opticns

Trigger

Release description

Triggered by Azure-zmodStack-demo-Cl 72.

Tags

Artifacts

I.'i':'l _Azure-zmogstack-demo-Cl / 72

Azure-zmodStack-demo-Cl / 72 for

28 https://microsoft.github.io/botframework-solutions/solution-accelerators/tutorials/enable-continuous-

deployment/2-create-pipeline/

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack

Page 48/52

https://microsoft.github.io/botframework-solutions/solution-accelerators/tutorials/enable-continuous-deployment/2-create-pipeline/
https://microsoft.github.io/botframework-solutions/solution-accelerators/tutorials/enable-continuous-deployment/2-create-pipeline/

An active or completed Release has a logs tab to review progress. Below is an example log of the Dev
stage’s tasks.

. Clicking on a task, like Stage Package below, provides details and any potential error messages.

@ stage Package (Azure Universal Download) Previous task

2623-85-19T13:€8:30. 52547557
2623-85-19T1: .52554417 Task Universal packages.

2623-85-19T1: 2557157 Dascription : Download or publish Universal Packages

2623-85-19T1 .52558287 Version 0.218.0

2623-85-19T1: 2560337 Author Microsoft Corporation

2023-05-19T1: .5256343Z Help https ://docs .microsoft. con/azure/devops/pipelin

2623-85-19T1: 2564647

2623-85-19T1 .48132157 Downloading: htf /@t3vsblobpr blob.vsass

2623-85-19T1: 05027 Caching tool: ArtifactTool 6.2.267 x64

2623-85-19T1 4.11992867 Downloading package: bsa_packagel versior

2623-85-19T1:

2623-85-19T1 7.41603067

2623-85-19T13:8:37.4161170Z " 3 ":"Found matching version: 1.8, . " "ArtifactTool .Commands . UPackDownloadCommand”
2623-85-19T13:€8:37.41617767 . ":"Obtained package metadata”, re 1factTool . Commands .UPackDownloadCommand” ,
2023-05-19T13: . " 3 " "DedupManifestArtifactClient will correl, e ession €2020088-955d-41ad-ba75-dg73edff
2623-05-19T13: .4163 . ": "Downloaded ©.6 MB out of 0.1 MB (6%). . “tifactTool .Commands . UPackDownloadC
2023-05-19T13: . " 308615 ":"Downloaded @.1 MB out of 0.1 MB (100%)

2623-05-19T13: E . ":"\nDownload statistics:\nTotal Content: @. al Content Downloaded: ©.8 MB\nCompression Save
2023-05-19T13: .4165 " b ": "Download completed. eC rtifactTool.Commands.UPackDownloadCommand
2623-05-19T13: .41659 . ": "Download complete”, i B
2023-05-19T13: .4166 " 5 6 ":"Success”, "1d9af52f", :"ArtifactTool. Conmands . UPackDawnloadCommand” , "UtcTi :
2623-65-19T1: 8:37 . ,"@m":"ApplicationInsightsTelemetrySender correlated 1 events with X-TFS-Sessi 029088 -955d -41ad-ba75-dg73edF F3e
2023-05-19T13: . i 0. ri 35BFDF6ACA7F770F AOSF8B237 FEE20F7DASSBE6611802E36423AC228A6CBAFAR2" , "ManifestId

4.4.1 Staging Packages for Deployment

Stage Package is a Universal package task to run the Download command on an Agent. In this case, the
latest version of the package created by the related Cl pipeline is copied to a location defined by
Destination directory on the Agent’s file system. The Agent can be the same one used in the Cl phase or
within a pool of available agents with similar capabilities.

Is

CD-Agent 4

Display name *

E Stage Package (Azure Universal Download)

re Universal Download

Stage Package |

)

Command *

m Refresh deployment tool

Download

ﬂ Prepare the Deployment Plan

m :D“e_ploy the DBB Package copy

Feed location *

Feed

Azure-IBM-ModStack-Feed

Package name *

cbsa_package

Version * @

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 49/52

Refresh deployment tool is a custom inline bash script to initialize the IBM Wazi Deploy configuration on
the Agent. In this case, the deployment tools are cloned from an administrative repository. But they can

be pre-installed on the agent.

CD-Agent

E Stage Package (Azure Universal Download)

Taskversion 3+ -

Display name *

Refresh deployment too

‘ m Refresh deployment tool

°f

Type @

m Prepare the Deployment Plan

ﬂ Deploy the DBS Package copy

Seript*

@ viewvamL [Remove

Assumes the repo was previously cloned on the agent
This repo has the deployment config

cd /home/azureuser

Fm -f ~/dbb-zappbuild

gt clone git@ssh.dev.azure.com:v3/1BM-Azure-Demo-Sandbax/Azure-zmodStack-demo/dbb-zappbuild

The last 2 tasks, Prepare and Deploy, leverage IBM Wazi Deploy’s Ansible playbooks. They unpack the
package and deploy artifacts to a target environment (Ansible managed node). Actions to handle CICS,
DB2 and standard batch programs are all supported.

The Prepare the Deployment Plan task generates a Wazi Deploy deployment plan on the agent.

E Stage Package (Azure Universal Download)
m Refresh deployment tool
ﬂ Prepare the Deployment Plan

ﬂ Deploy to Dev Wazi Sandbox - TARGET CICS RPL="CBSA....

Taskversion 3 ~

Display name *

Prepare the Deployment Plan

Type @
File Path () Inline
script *
echo "Deploying Package to ->"_$(System Dy ingDirectory)

export PATH=/home/azureuser/local/bin:SPATH

echo “»>> Generate the Deployment Plan ... *

echo"..”

cod $(System.DefaultWorkingDirectory]

plum-generate -dm ~/dbb-zappbuild/scripts/CD/deployment-config/static-deployment-method.yml
/package tar

Is -las

echo ">>> Deployment Plan ... *
cat /azure-deployment planyml

-dp ./azure-deployment planyml -pif

The Deploy to Dev Wazi Sandbox task uses the generated Deployment Plan and downloaded package from
Azure Artifacts to run the Ansible playbook against the target Wazi Sandbox.

obhger

E St‘ager P lfige (Azure Universal Download)
a Eeifresh deployment tool

ﬂ Errerpare the Depleyment Plan

ﬂ Deploy to Dev Wazi Sandbox - TARGET CICS RPL="CBSA....

Task version 3+ ~

Display name *
Deploy to Dev Wazi Sandbox - TARGET CICS RPL="CBSA.CICSBSA.LOADLIB'
Type @
file path (@) Inline
Script *

export _dp=~/dbb-zappbuild/scripts/CD/deployment-config/environment-conf/ansible
export PATH=/home/azureuser/local/bin:SPATH

echo "> »> Deploying Azure Package with Ansible”

ansible-playbook $_dp/deploy.yml -i $_dp/inventories -e plum_deployment_plan_file=$(System.DefaultWorkingDirectery)/azure-

deployment_planyml -e plum_package_file=3$(System.DefaultworkingDirectory)/package.tar

R EREEREEERRIREEEIEREIIEIEIIEIRIEIEIIIRRIRRRRT
B L T EEEE RS S S P
DEPLOY COMPLETE"

-e hlg=CBSA.CICSBSA

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 50/52

4.5 Azure DevOps End-to-End

The diagram below outlines the very basic components of the CI/CD solution described in this section. It
highlights an Azure Environment with Azure DevOps and its core services, a RedHat OpenShift Cluster that
hosts an IBM Z and Cloud Modernization Stack which contains the build, publish, and deploy components.

&

Azure DevOps C’

Repo Cl - Pipeline Artifact Feed CD - Release

Push

RedHat OpenShift

1 I
[]
1 I
L I
] I
IBM Z and Cloud Modernization Stack 1 I
Build : Publish : Deploy
1 I
ﬁ : |
(Y M \
$ ' =
Deb User Build ! ——
The — L'ra ______ I —
Developer
" DBB
Wazi DevSpaces Wazi Sandbox

For more details on the developer flow, refer to the section 2.3 Setting up Wazi for Dev Spaces and Wazi
Analyze which is common across all IBM supported Cloud providers.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 51/52

5 Conclusion

This document provides recipes and showcases how to integrate the Wazi components of the IBM Z Cloud
and Modernization Stack (Wazi Dev Spaces, Wazi Sandbox, Wazi Deploy and Wazi Analyze) to provide a
Cloud-native experience for developers and administrators using services that can be provisioned in
minutes.

The examples provided throughout this document can serve as a baseline to implement your own DevOps
toolchain leveraging Wazi components. Some customizations will be needed to meet your SDLC best
practices and workflows.

This document also showcases an implementation of the Wazi tools on the AWS Cloud and Azure Cloud
platforms. However, they can be used as a reference across all supported IBM cloud providers.

The purpose of leveraging Cloud services is to modernize the Software Delivery Lifecycle of mainframe
applications, by providing isolated development and test runtimes for more flexibility and agility in
development practices.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 52/52

