

July, 2023 - Release 1.4

Building enterprise CI/CD

pipelines for mainframe

applications using the IBM Z &

Cloud Modernization Stack

An IBM Document from

IBM Z DevOps Acceleration Program

Abstract
This document describes how Wazi components of the IBM Z & Cloud

Modernization Stack offering can be integrated to create an enterprise

CI/CD pipeline leveraging Cloud platform capabilities.

Mathieu Dalbin
mathieu.dalbin@fr.ibm.com

Nelson Lopez
Nelson.lopez1@ibm.com

mailto:mathieu.dalbin@fr.ibm.com
mailto:Nelson.lopez1@ibm.com

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 2/52

Table of content

1 INTRODUCTION ..3

1.1 OUTLINE.. 3

1.2 PREREQUISITES ... 4

2 PREPARING IBM Z AND CLOUD MODERNIZATION STACK FOR CI/CD PIPELINES5

2.1 ARCHITECTURE OF THE SETUP .. 5

2.2 CONFIGURING THE Z RUNTIME ENVIRONMENT PROVIDED BY WAZI SANDBOX .. 5

2.2.1 Configuring network for Wazi Sandbox .. 6
2.2.2 Configuring the build environment in Wazi Sandbox .. 8
2.2.3 Setting up credentials for cloning application repositories on Wazi Sandbox .. 10

2.3 SETTING UP WAZI FOR DEV SPACES AND WAZI ANALYZE .. 10

2.3.1 Configuring Wazi for Dev Spaces .. 11
2.3.2 Setting up Wazi Analyze ... 20

3 REAL-LIFE EXAMPLE - BUILDING A CI/CD PIPELINE WITH AWS DEVELOPER SERVICES 23

3.1 CONFIGURING AWS CODEBUILD TO BUILD MAINFRAME APPLICATIONS ... 24

3.2 USING AWS CODEDEPLOY TO DEPLOY Z/OS ARTIFACTS ... 27

3.2.1 Installing and configuring AWS CodeDeploy agent... 28
3.2.2 Configuring the deployment tasks .. 30

3.3 DEFINING THE AWS CODEPIPELINE ORCHESTRATION ... 31

3.3.1 Integrating the build specification .. 33
3.3.2 Integrating the deployment configuration ... 34
3.3.3 Verifying the pipeline execution .. 34

3.4 A SAMPLE DEVELOPER WORKFLOW ... 35

3.4.1 Implementing a change with Wazi for DevSpaces .. 35
3.4.2 Monitoring the pipeline execution in AWS CodePipeline .. 36
3.4.3 Browsing the pipeline artifacts and reports .. 40

4 BUILDING A CI/CD PIPELINE WITH AZURE DEVOPS AND IBM Z & CLOUD MODERNIZATION STACK

 42

4.1 AZURE DEVOPS AND Z/OS INTEGRATION ... 42

4.2 CREATING THE GIT REPOSITORY .. 43

4.3 DEFINING THE CI PIPELINE IN AZURE DEVOPS ... 44

4.4 CREATING THE RELEASE PIPELINE (CD) .. 48

4.4.1 Staging Packages for Deployment .. 49
4.5 AZURE DEVOPS END-TO-END ... 51

5 CONCLUSION .. 52

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 3/52

1 Introduction

1.1 Outline

This document is a cookbook presenting different recipes to build and configure enterprise CI/CD pipelines

for developing and testing mainframe applications on Cloud platforms, by leveraging the IBM Z & Cloud

Modernization Stack offering. The IBM Z & Cloud Modernization Stack includes various capabilities to

modernize mainframe applications, based on the RedHat OpenShift platform. For development and test

purposes, this offering includes Wazi for DevSpaces, Wazi Analyze and Wazi Sandbox, which together

provide mainframe developers with a Cloud-native experience with zero install.

This publication describes one way to setup the integration but doesn’t cover all the other possible

options. The official documentation of each component provides guidance and tips on how to set up the

different parts, while the recipes presented in this documentation focus on required additional

configurations to build a CI/CD pipeline for editing (Wazi for DevSpaces), understanding (Wazi Analyze),

building (with IBM Dependency Based Build) and deploying mainframe applications to the virtualized

execution runtime (Wazi Sandbox).

The described steps are based on Wazi DevSpaces version 2.3, which provides Wazi Analyze as a sidecar

component and Wazi Sandbox version 2.3. For this demonstration, the Extended ADCD distribution will

be leveraged, which ships IBM Dependency Based Build (DBB) version 1.1.3. The following recipes may

not work be applied for older versions of these products, nor with newer versions that may require a

different configuration.

This document will describe the necessary customization of Wazi Sandbox, Wazi for DevSpaces and Wazi

Analyze to integrate these components and start to build a CI/CD pipeline. These steps are required

independently of which Cloud platform you are using. The second section will cover a real-life example

based on the AWS Cloud platform, showcasing how the Wazi offerings can be leveraged to build an

enterprise CI/CD pipeline for Mainframe applications using AWS Cloud platform services.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 4/52

The following diagram shows a generic implementation of a Cloud-based development & test

environment for mainframe applications:

1.2 Prerequisites

Throughout this document, it is assumed all the necessary Wazi components are already deployed to the

OpenShift Cluster Platform that supports these activities. Deployments of the Wazi products are described

in the IBM documentation1. This document details technical, manual steps required to configure the Wazi

components to work together and is aiming experienced administrators and developers. However, to

simplify some of the configuration steps described here, automation has been developed and is available

through Ansible playbooks. A detailed tutorial2 presents the different tasks that can be automated to save

time for the developers to set their development environment up. These Ansible playbooks will not be

used in the following document.

It is also assumed that the source files of the Z applications for which the CI/CD pipeline will be set up are

already hosted on the Git-based service of the Cloud platform you are using. If you are interested in

learning more about the migration to Git, you might find this collection interesting3.

The mainframe application used in this setup is called CBSA (for CICS Banking Sample Application) and is

a CICS and DB2-based application made of Cobol programs.

1 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=installing
2 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-improve-
your-development-productivity-ansible
3 https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/resources.html

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=installing
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-improve-your-development-productivity-ansible
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-improve-your-development-productivity-ansible
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/resources.html

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 5/52

2 Preparing IBM Z and Cloud Modernization Stack for CI/CD pipelines

2.1 Architecture of the setup

The following diagram shows the different components that will be configured as part of this cookbook.

This architecture represents a typical setup when using the Wazi components to build a CI/CD pipeline for

Mainframe applications.

When implementing changes to mainframe applications, developers are using Wazi for DevSpaces, a web-

based portal to access their development workspace where they can use the provided features to code,

debug and perform User Builds for their programs.

Leveraging Wazi Analyze, developers can understand the relationships between the different artifacts of

the application they are working on.

Wazi Sandbox provides a virtualized Z runtime environment supporting the developers in their daily tasks,

to build (compile and link-edit) mainframe programs, run debug sessions and perform Unit tests.

Eventually, the programs that are just built can be deployed on the same Wazi Sandbox system to perform

early functional tests. This Sandbox system is typically used by one developer, and an other Sandbox

system can be used for the pipeline activities. In the setup we will detail in this document, the same

Sandbox system is used for convenience, but the implementation should respect IBM’s licensing

conditions.

2.2 Configuring the Z runtime environment provided by Wazi Sandbox

The first building block we will focus on is Wazi Sandbox. This product, which can be deployed on an

OpenShift Cluster Platform, is able to virtualize a Z system. This isolated Z system can serve several

purposes, like building artifacts in a CI/CD pipeline or perform unit tests before moving the application to

the next integration test environments.

Wazi Sandbox is shipped with a Z distribution known as the Extended ADCD distribution. Extended ADCD

contains many products and subsystems, like CICS, DB2, IMS, already packaged and configured to work

together. The use of this image drastically simplifies the setup of virtualized Z systems. Extended ADCD

also comes with the necessary components to support a modern CI/CD pipeline: IBM Developer for Z (IDz)

Host components (Z Explorer + RSED), Git Client on Z and IBM Dependency Based Build (DBB). For the rest

of the document, we will refer to the Extended ADCD distribution as ADCD.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 6/52

In the next sections, we will review the different configuration steps to perform, to get a working Z

sandbox system that can integrate with the other Wazi products. It is assumed that Wazi Sandbox has

already been deployed and is running properly. Setting up Wazi Sandbox is described in the IBM

documentation4. Also, it is assumed that the Wazi Sandbox system can be reached with an SSH client (like

PuTTY).

2.2.1 Configuring network for Wazi Sandbox

2.2.1.1 Exposing services endpoints of the Wazi Sandbox in the OpenShift Cluster

Platform configuration

From the OpenShift Cluster Platform perspective, the Z Sandbox system is exposing services that are

mapped to external ports on the pod where the containers are running. This configuration is known as a

Node Port configuration. To set this demonstration up, some additional services must be exposed, like the

CICS CMCI port, which will be used during the deployment phase to deploy CICS programs. The following

configuration can be seen optional if you don’t plan to use CMCI to deploy CICS artifacts, but the same

instructions are relevant for any other service you need to expose outside of the Wazi Sandbox system.

The Node Port configuration can be updated to expose additional services, as defined in a YAML file. In

the namespace where the Wazi Sandbox is deployed, with the Administrator view, navigate to the

Network section and select Services. Select the Node Port configuration and edit its YAML definition to

add the port to be exposed. The following snippet exposes the CICS CMCI port (port 7313 on Z) to an

available port on the pod (nodePort 32313):

 - name: cmci

 protocol: TCP

 port: 7313

 targetPort: 7313

 nodePort: 32313

Save this YAML file, and make sure the changes are committed. The CMCI port for the CICS region already

setup in Wazi Sandbox image will be later used to deploy artifacts to CICS. To make the change permanent,

you can also edit the YAML definition of the WaziSandboxSystem resource that was deployed in OpenShift

Cluster Platform, by adding an entry in the nodeport section of the YAML file.

Most of the operations – if not all - can also be performed through OpenShift command-line commands

(using the oc utility). For instance, the list of Node Ports can be retrieved with the oc get -o yaml service

adcd-nodeport command. Other oc commands can be used to administer the Wazi Sandbox instance. This

documentation page5 lists some of the commands to be used when accessing the Wazi Sandbox system.

4 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=host-option-1-managing-
development-test-environments-sandbox
5 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=sandbox-using-instance

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=host-option-1-managing-development-test-environments-sandbox
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=host-option-1-managing-development-test-environments-sandbox
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=sandbox-using-instance

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 7/52

2.2.1.2 Configuring outbound communication from the Z System

To be able to communicate with the outside world, the Z system running in Wazi Sandbox certainly needs

to know about the domain names and DNS servers used in your Cloud platform. This requires a specific

setup on the Z system.

To modify the network configuration of the Z machine, it is easiest to log in with a Telnet 3270 client and

start a TSO session. The predefined IBMUSER user on ADCD has all the permissions required to perform

this customization. By default, Wazi Sandbox is running the NZ initialization parameter (IPL load

parameter), and you can verify this by running the D IPLINFO MVS command. If the load parameter is

different, the member that contains the TCP/IP configuration to modify may be different as well. The D

SYMBOLS command will also show which configuration is used, by looking at the &GBLRESL. symbol:

&GBLRESL. = "GBLRESNZ"

If not already done, log into the Wazi Sandbox system with the IBMUSER user, and find the member

ADCD.Z25B.TCPPARMS(GBLTDANZ). Depending on the ADCD version you are using, this member may be

located in a different library, as typically the 2nd qualifier describes the ADCD version.

In this GBLTDANZ member, add the following statement (around line 100):

SEARCH us-east-2.compute.internal

And the following statement (around line 145):

NAMESERVER 10.0.0.2

These statements specify that the search for domain names should be performed against this Search

server. Depending on your Cloud provider and Cloud network settings, these values will likely change.

The same two lines should be added to the /etc/resolv.conf file on USS. The RESOLVER task needs to be

refreshed, to take into account these new definitions, with the following command (to be adapted for the

ADCD version you are using):

F RESOLVER,REFRESH,SETUP=ADCD.Z25B.TCPPARMS(GBLRESNZ)

After this setup, you should be able to resolve hostnames in your Cloud platform. You can verify the

correct resolution of hostname by issuing a TSO PING command from the Z Sandbox system, to a machine

that belongs to your Cloud platform.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 8/52

2.2.2 Configuring the build environment in Wazi Sandbox

The next step in the configuration process is about setting up the building block required to support the

CI/CD pipeline. Typically, Wazi Sandbox systems are connected to the Internet, making it easier to install

additional components.

2.2.2.1 Retrieving the Build framework

As the build phase is leveraging IBM Dependency Based Built (DBB) in this setup, we will retrieve the

zAppBuild6 framework and the DBB Utilities7 scripts to the Z system. These components are available on

public GitHub repositories, that can be locally cloned on the Z Sandbox system.

Before cloning these two repositories to Z, let’s define a location on USS where all the required materials

will be stored. In this setup, the /var/work folder was chosen to host these components. If necessary, a

specific zFS VSAM dataset can be allocated, to make sure enough room is available. If a zFS VSAM dataset

is allocated, make sure it is mounted after the IPL at the right location. The following commands can then

be executed, to clone the two GitHub repositories:

mkdir /var/work

cd /var/work

git clone https://github.com/IBM/dbb-zappbuild.git

git clone https://github.com/IBM/dbb.git

2.2.2.2 Generating keys to facilitate integration into the pipeline

To facilitate the integration of the Z Sandbox system to the pipeline process, we will now enable the login

to the Z system for the IBMUSER user (which we plan to use as our build user) through a private key. Using

any Linux machine, generate SSH private keys using the ssh-keygen command:

ssh-keygen -t rsa -b 4096

6 zAppBuild GitHub repository: https://github.com/IBM/dbb-zappbuild
7 DBB Utilities GitHub repository: https://github.com/IBM/dbb

https://github.com/IBM/dbb-zappbuild
https://github.com/IBM/dbb

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 9/52

The generated keys now need to be sent to the Z sandbox system and accepted for the IBMUSER user. As

the connection is performed with SSH, the session must be established against the OpenShift worker node

that runs the Wazi Sandbox system. This information can be retrieved from the OpenShift console, while

looking at the pods for the Wazi Sandbox project. Here is an example showing such information:

The Wazi Sandbox image is running on node ip-10-0-35-91.us-east-2.compute.internal, as shown on the

bottom-right corner of the above image. This information will be used to set up the SSH connection, while

the SSH port used by the Wazi Sandbox system can be retrieved from the node port configuration:

The port exposed by Wazi Sandbox to connect with SSH to the Z system is 31772.

With the following command, the keys are registered for the IBMUSER on the Z Sandbox (assuming the

Sandbox system is reachable from the Linux machine where the keys were created, and the SSH server of

the Z system is mapped to 31772, as defined in the NodePort configuration):

ssh-copy-id ibmuser@ip-10-0-35-91.us-east-2.compute.internal -p 31772

After providing the password for IBMUSER and logging out, you should now be able to login again as

IBMUSER without being prompted for the password.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 10/52

2.2.3 Setting up credentials for cloning application repositories on Wazi Sandbox

It is assumed that the Z application for which the pipeline will be built is already hosted on a Git repository,

and available and accessible on the Cloud platform you are using.

In this demonstration, the Z source files are hosted on the AWS Cloud platform, via the AWS CodeCommit

service. This service is providing a Git-based server, where repositories can be created, and files managed.

Alternative Git servers can be used as well, depending on the Cloud platform you are using.

Before cloning your source files to the Z Sandbox system, setting up the credentials to access the Git

repository is required. When using an AWS CodeCommit repository, this page8 provides information about

creating repositories, while this page9 explains how to configure credentials for Git clients.

In our case, we chose to use HTTPS communication, although SSH was also a valid option too. When

creating the HTTPS Credentials for Git, the generated username and password need to be stored as they

will be used to configure the Git connection when cloning the AWS CodeCommit repository.

To facilitate the clone operation with Git on Z, the credential helper with Git on Z will be configured to use

a local store. This configuration is enabled by issuing the following command:

git config --global credential.helper 'store --file ~/.my-credentials'

The credentials will then be stored in the file pointed by the --file parameter, the first time the password

is requested through the Git prompt. The next step is to clone your application repository on USS with the

Git Client, using this command (to be adapted for your needs):

git clone https://git-codecommit.us-east-2.amazonaws.com/v1/repos/CBSA

Where us-east-2 is the AWS region that hosts your AWS CodeCommit server, and CBSA is the Git

repository you are cloning. After running this first clone, the next git fetch or git pull commands

shouldn’t prompt for the username and password.

2.3 Setting up Wazi for Dev Spaces and Wazi Analyze

Wazi for Dev Spaces provides developers with a Web-based development environment, already

configured with facilities to code, debug and build Z application programs. For each developer, a

namespace in OpenShift is created, with its attached storage space, in which the user can create

workspaces. Typically, a workspace represents an application the developer is working on.

For the next phase, it is assumed the Wazi for Dev Spaces Operator is already installed and configured, for

developers to start using it. This documentation10 explains how to deploy and configure Wazi for Dev

Spaces.

8 AWS CodeCommit User Guide: https://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html
9 AWS CodeCommit Credentials: https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
10 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=code-option-1-developing-
wazi-dev-spaces

https://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=code-option-1-developing-wazi-dev-spaces
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=code-option-1-developing-wazi-dev-spaces

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 11/52

2.3.1 Configuring Wazi for Dev Spaces

The IBM Documentation website contains information and tutorials11 showing how to setup Wazi for Dev

Spaces. The following sections provide additional insights and examples of configuration that were used

in our infrastructure.

2.3.1.1 Creating the workspace in Wazi for Dev Spaces

The first step of the configuration when using Wazi for Dev Spaces starts with the appropriate Devfile.

This YAML file describes the configuration of the workspace to be created, with, among other information,

the link to the Git repository that will be cloned to the workspace. Users can choose to create a Custom

Workspace to customize their workspace. It is recommended to start from a template:

In our setup, we chose to start with the Wazi for Dev Spaces with Analyze template, as we plan to use

Wazi for Dev Spaces with Wazi Analyze as a sidecar. In order to set the configuration up before working

with our Git-based project, let’s first create a workspace that doesn’t reference any Git repository yet,

meaning the projects section of the YAML file should be deleted:

11 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-creating-
getting-started-your-workspace

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-creating-getting-started-your-workspace
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=developing-tutorial-creating-getting-started-your-workspace

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 12/52

The workspace should then be active after a few minutes, depending on the network bandwidth, as

container images are downloaded for the first time.

Wazi for Dev Spaces comes with a default private key, that is generated when the workspace is created.

This key can be used to clone the Git repository that contains your application’s sources. Typically, you

would need to register that key against the Security Manager provided by your Cloud platform.

In Wazi for Dev Spaces, use the command SSH: View Public Key…, to retrieve the key that was

automatically generated.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 13/52

The key is displayed in Wazi for DevSpaces and you can now upload this key to your account security

profile. As an example, on the AWS platform, you want to use the IAM Management Console to define

these keys for each user. On the AWS platform, this is done through the panel shown below, where you

would upload your SSH public key:

After uploading the key, a new entry is displayed in this table:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 14/52

This last SSH Key ID entry will be used as the username that we will use to clone our Git repository to our

workspace, using SSH. As no repository is yet to be defined in Wazi for Dev Spaces, you will get an option

to clone a Git repository, on the Explorer page of Wazi for Dev Spaces:

You can now press the Clone Repository button to clone the repository to your local workspace. You need

to specify the URL to your Git repository and the credentials provided by your Cloud platform:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 15/52

You are then prompted to specify where to clone the repository. It is advised to select the /projects folder:

Wazi for Dev Spaces is now cloning the Git repository and asks you to open it. You can open it in a new

window or simply add it to the current workspace. In our case, we chose the Add to Workspace option:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 16/52

To finalize the configuration of the Git repository, the name and the email of the user must be defined for

Git to allow pushing content to the Git repository. These properties can be defined in the Preferences of

Wazi for DevSpaces. You can search for Git user in the list of settings to filter out propositions. In the list,

you should be able to find the following properties and set them according to your profile:

The workspace can now be stopped to edit its Devfile, which should actually be updated to include the

Git repository that was cloned. However, in some cases, the Devfile is not correctly updated and the

projects section of the Devfile YAML file can then be customized, to point to the Git repository containing

your application’s source files:

projects:
 - name: CBSA
 source:
 location: 'ssh://APKA6QORATN7Z5G7LCFH@ git-codecommit.us-east-
2.amazonaws.com/v1/repos/CBSA '
 type: git
 branch: Development

In this setup, we specified to connect using SSH, and we provided the username to be used as part of the

URL of our Git repository.

The next configuration step is about customizing the properties for the IBM Z Open Editor plugin installed

in Wazi for Dev Spaces. To resolve local dependencies, for instance, with copybooks, property groups must

be set up according to the structure of your Git repository. With our application’s repository, copybooks

are located in the copylib folder of the CBSA subfolder. As our project is cloned to the /project/CBSA folder

in our workspace, the absolute path to our copybooks is /projects/CBSA/CBSA/copylib. This path must be

specified in the property group, as shown below. Wazi for Dev Spaces is leveraging ZAPP files for property

groups, so this entry should be added to the ZAPP file. If no ZAPP file exists yet for your repository, you

must create one and customize it according to your needs. One sample can be found in the IBM Z Open

Editor GitHub repository12.

12 Z Open Editor sample ZAPP file: https://github.com/IBM/zopeneditor-sample/blob/main/zapp.yaml

https://github.com/IBM/zopeneditor-sample/blob/main/zapp.yaml

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 17/52

The following snippet shows how the property group for Cobol copybooks was defined:

name: cbsa

description: ZAPP File for CBSA application

version: 3.0.0

author:

 name: IBM CORPORATION

propertyGroups:

 - name: cobol-copybooks

 language: cobol

 libraries:

 - name: syslib

 type: local

 locations:

 - "**/copylib"

It is also possible to specify libraries that are available on a remote Z system.

Additional documentation about the ZAPP file can be found in the IBM Z Open Editor GitHub repository13.

2.3.1.2 Connectivity setup to Wazi Sandbox

The next configuration phase consists of establishing the connectivity to the Wazi Sandbox Z system. As

Wazi for Dev Spaces comes with Zowe Explorer, ZOWE CLI and its RSE plugin installed, we will use this

facility to connect to the Sandbox system, which will be leveraged to perform User Builds.

We start by identifying the RSEAPI endpoint exposed by our Network Configuration in OpenShift Cluster

Platform. For the Wazi Sandbox project, select the Routes entry in the Networking section, in the

Administrator view:

13 Z Open Editor ZAPP File: https://ibm.github.io/zopeneditor-about/Docs/zapp.html#zapp-use-cases

https://ibm.github.io/zopeneditor-about/Docs/zapp.html#zapp-use-cases

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 18/52

This view lists the routes that are exposed with HTTP/HTTPS protocols. One of the routes should be related

to the RSEAPI service:

Copy the location URL, as it will be needed for the definition of the RSE profile in Zowe.

The next step is to create an RSE profile. However, Secure Credentials Storage must first be disabled, as

this facility cannot be used in the current version of Wazi for Dev Spaces since it is executing in a container.

To disable the Secure Credential Storage mechanism, open the settings and search for Secure Credentials.

The following option should then be unchecked:

Then navigate to the Zowe Explorer view, where you can create a profile. Click the + icon, to create a

profile.

Select the Create a new Team Configuration File option, and choose the Global option for the location of

the profile. In the generated zowe.config.file file, navigate to the rse entry and edit it to add the host

property. Extract the hostname from the URL representing the route exposed for the RSEAPI service and

provide this value - you also want to accept self-signed certificates by setting rejectUnauthorized to false.

"host": "cicd-wazisandboxsystem-adcd-nazare-rse-api-wazi-sandbox.apps.xxxxxxx",

"rejectUnauthorized": false

Also, check that the autoStore property at the end of this file is set to false. You are then prompted to

restart Zowe Explorer: go ahead and do so, and the rse profile should now be recognized as the default

profile. You can now try to retrieve information from the Z system. In Zowe Explorer, you can search for

datasets, using IBMUSER.** as a filter. After providing the IBMUSER user and the password, you should

be able to retrieve the list of datasets per the request.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 19/52

The next phase is to set up the User Build configuration. Again, edit the ZAPP file to add the workspace’s

definitions for the User Build (customize the following snippet to meet your needs):

profiles:

 - name: dbb-userbuild

 type: dbb

 settings:

 application: CBSA

 command: "$DBB_HOME/bin/groovyz -DBB_DAEMON_HOST 127.0.0.1 -

DBB_DAEMON_PORT 7380 "

 buildScriptPath: "/var/work/dbb-zappbuild/build.groovy"

 buildScriptArgs:

 - "--userBuild"

 - "--workspace ${zopeneditor.userbuild.userSettings.dbbWorkspace}"

 - "--application ${application}"

 - "--hlq ${zopeneditor.userbuild.userSettings.dbbHlq}"

 - "--outDir ${zopeneditor.userbuild.userSettings.dbbLogDir}"

 - "--verbose"

 additionalDependencies:

 - ${application}"/application-conf

 - "zapp*"

 logFilePatterns:

 - "${buildFile.basename}.log"

 - "BuildReport.*"

Additionally, the following definitions must be added in the User’s settings (in the settings.json file):

 "zopeneditor.userbuild.userSettings": {

 "dbbWorkspace": "/u/ibmuser/projects",

 "dbbHlq": "IBMUSER.CBSA.UB",

 "dbbLogDir": "/u/ibmuser/projects/userbuild/logs"

 },

Wazi for DevSpaces also provides a built-in helper to create your ZAPP file, accessible by pressing the ctrl-

space key combination. This facility lists the keywords available for creating the content of this file.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 20/52

You should now be able to request a User Build with Wazi for Dev Spaces, using the Wazi Sandbox Z

system. The first step to perform is called Run setup for IBM User Build, to initialize the build workspace

on Z and upload the files required for a correct build with zAppBuild (typically, the property files of the

application, which are stored in the application-conf subfolder). When the User Build is then triggered,

the User Build feature will find the necessary dependencies, upload them to the target Z system where

the build is performed and will execute the command defined in the ZAPP file. The output of the build

should appear in the console in Wazi for Dev Spaces:

2.3.2 Setting up Wazi Analyze

Starting with Wazi for Dev Spaces 2.3, Wazi Analyze is available as a sidecar component when workspaces

are deployed. If the workspace you configured contains the Wazi Analyze component, you can leverage

this facility to scan for the source code stored in the Git repository that you cloned. The results of the scan

are then available in a Web-based interface in your workspace’s environment, directly accessible through

endpoints in Wazi for Dev Spaces. A tutorial on the IBM Documentation website14 shows how to integrate

Wazi Analyze in the developer’s tasks.

14 https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=tutorials-tutorial-analyzing-
sample-source-files-wazi-dev-spaces

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=tutorials-tutorial-analyzing-sample-source-files-wazi-dev-spaces
https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.4?topic=tutorials-tutorial-analyzing-sample-source-files-wazi-dev-spaces

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 21/52

For our setup, we took a slightly different approach, where we provided a shell script that performs all

the setup work, like creating the project in Wazi Analyze, performing the scan and starting the necessary

services up. These actions are grouped into a shell script that is stored in the same Git repository that

contains the application’s source code. Stored in a specific subfolder called DevSpaces, the following script

performs the necessary Wazi Analyze tasks automatically (it should be customized for your setup and

application):

#!/bin/sh

rm -rf /home/wazi/data/CBSA

wa-create.sh CBSA multi

cp /home/wazi/config/autoDB.txt /home/wazi/data/autoDB.txt

wa-scan.sh CBSA /projects/CBSA/WaziAnalyze/CBSA.dat

wa-startup.sh -o true

The first action that this script will perform is to perform some cleanup in the Wazi Analyze container, in

case previous scans were already performed. Scan data is stored in the /home/wazi/data folder, each

application being represented as a project in a subfolder (CBSA in our case). The wa-create.sh script helps

in creating a project in Wazi Analyze, by providing the name and type of the project (multi means multiple

types of artifacts to scan). The copy command is used to preserve the existing Database configurations in

Wazi Analyze (it comes with a default application, like GenAppC) and make them available when Wazi

Analyze services are starting.

The wa-scan.sh action asks Wazi Analyze to scan the source code for the CBSA project that was just

created. The /projects/CBSA/WaziAnalyze/CBSA.dat file is a configuration file passed along the command

line, to specify scan options. This file is also part of the Git repository of the application, to facilitate its

use by developers. The last command, wa-startup.sh, is used to start the Wazi Analyze services that are

supporting the Web-based interface to browse the scan results. The -o flag is mandatory in our context,

as the script is running in an OpenShift Cluster Platform environment. When executing this script, the user

will be prompted to provide a password, that will then be used for authentication when the services are

running.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 22/52

To facilitate the launch of this script, a Task can be created in Wazi for Dev Spaces. The task can be defined

in the Devfile, by adding this entry at the end of the YAML file:

 - name: Start Wazi Analyze

 actions:

 - workdir: '${CHE_PROJECTS_ROOT}/CBSA'

 type: exec

 command: '${CHE_PROJECTS_ROOT}/CBSA/DevSpaces/setupWA.sh'

 component: wazi-analyze

This way, a task called Start Wazi Analyze is now available through the Terminal → Run Task… menu

option. When launching this task, the script is executed, creating the project in Wazi Analyze, scanning

the source and launching the services. When the services are launched, the user is prompted with a

password, that will then be used to log into the Wazi Analyze Web interface.

When the Wazi Analyze services are started, a popup window asks to access the Web Interface in a new

tab of your Web browser:

You should now be able to log in with the password provided during the startup of services and browse

the scanned artifacts of your application:

The DevSpaces workspace templates also ship with pre-configured Tasks, that can be used to create a

Wazi Analyze project and scan the content of the repository to populate that project. These tasks are

called Analyze-1 and Analyze-2, and can be executed when needed by the developers, if the above script

setup doesn’t meet users’ expectations.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 23/52

3 Real-life example - Building a CI/CD pipeline with AWS Developer
services

In this section, we will detail the main steps that should be performed to leverage the Wazi components

as part of a modern CI/CD pipeline. To support this configuration, the AWS Cloud platform will be used,

as it provides out-of-the-box services to implement DevOps practices. These services can also be

leveraged for the mainframe applications’ software delivery lifecycle.

Different options exist to deploy the Developer services in the AWS Cloud platform, but in this

demonstration, the AWS CodeCommit15, AWS CodeBuild16, AWS CodeDeploy17 and AWS CodePipeline18

services will be used. Customers also have the possibility to deploy GitHub19 (instead of the AWS

CodeCommit service) to store the mainframe source codes, or Jenkins20 (instead of AWS CodePipeline) on

AWS to drive the CI/CD pipeline executions.

The following diagram shows the infrastructure that was setup to demonstrate the integration of the Wazi

components on the AWS Cloud platform:

At this stage, the mainframe application source code has already been migrated to the AWS CodeCommit

service, and the necessary steps were performed to allow users to work with this repository. The official

15 https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
16 https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
17 https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
18 https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
19 https://aws.amazon.com/solutions/implementations/github-enterprise/
20 https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-
and-aws-codedeploy/

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://aws.amazon.com/solutions/implementations/github-enterprise/
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 24/52

documentation available on the AWS website provides the necessary information to push the source

artifacts to an AWS CodeCommit repository and explains how to securely connect to the AWS

CodeCommit repository from developers’ workstation.

In our setup, the AWS CodeCommit repository was already used when setting up the Wazi for Dev Spaces

workspace, and we already verified the connectivity between our developer environment and the AWS

CodeCommit service (See section 2.3.1 Configuring Wazi for Dev Spaces).

The next section explains how to configure the AWS CodeBuild service to perform the build of the

mainframe application on the Wazi Sandbox Z system.

3.1 Configuring AWS CodeBuild to build mainframe applications

AWS CodeBuild is using containers to drive build actions. In our configuration, containers make a perfect

choice for more flexibility and agility, because most of the actions of the build phase are actually

performed on the Wazi Sandbox system. For connectivity purposes, the SSH protocol will be used to

submit build commands on the Z system.

Through the AWS CodeBuild interface, the first step is to create a new Build project. After providing a

meaningful name for this project (CBSA-Build-Sandbox in our case), you can define the appropriate

settings for your configuration. The AWS CodeBuild documentation21 provides guidance and details the

different options for the Build project.

In our setup, we chose to disable the source section, as the Git repository will be cloned from Z directly

during the pipeline execution. The Environment section describes the selected container image to execute

the actions. We chose an Ubuntu-based image with the latest software stack. Any image with an SSH client

is sufficient to invoke the mainframe build actions.

21 https://docs.aws.amazon.com/codebuild/latest/userguide/getting-started.html

https://docs.aws.amazon.com/codebuild/latest/userguide/getting-started.html

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 25/52

The Buildspec section defines the actions that will be performed during the build. This is where the

commands executed on Z will be defined. Commands can be provided in a YAML format, for better

readability. The following section is an example of a typical setup, as used in our configuration:

version: 0.2
phases:
 pre_build:
 commands:
 - aws secretsmanager get-secret-value --secret-id WaziSandboxSSHPrivateKey --query
'SecretString' --output text > /tmp/id_rsa
 - chmod 600 /tmp/id_rsa
 build:
 commands:
 - ssh -i /tmp/id_rsa ibmuser@ip-10-0-35-91.us-east-2.compute.internal -p 31772 -o
StrictHostKeyChecking=accept-new -o SendEnv=CodeCommitBranchName bash 'env;.
/u/ibmuser/.bash_profile;env;cd /var/work/pipeline/CBSA;git fetch --all; rm -rf
/var/work/temp/BUILD-OUTPUT; mkdir -p /var/work/temp/BUILD-OUTPUT;git checkout Development;
git pull --all;$DBB_HOME/bin/groovyz -DBB_DAEMON_HOST 127.0.0.1 -DBB_DAEMON_PORT 7380 -
Djava.library.path=$DBB_HOME/lib:/usr/lib/java_runtime64 /var/work/dbb-zappbuild/build.groovy
--workspace /var/work/pipeline/CBSA --hlq CBSA.DEVELOP --workDir /var/work/temp/BUILD-OUTPUT -
-application CBSA --logEncoding UTF-8 --impactBuild CBSA/application-conf/mandatoryBuild.txt;
cd /var/work/temp/BUILD-OUTPUT; for f in `find . -name "*.zunit.report.log"`; do Xalan -o
$f.xml $f /var/work/extensions/zunit2junit/AZUZ2J30.xsl; done;$DBB_HOME/bin/groovyz -
DBB_DAEMON_HOST 127.0.0.1 -DBB_DAEMON_PORT 7380 -
Djava.library.path=$DBB_HOME/lib:/usr/lib/java_runtime64
/var/work/extensions/dbb/Pipeline/PackageBuildOutputs/PackageBuildOutputs.groovy --workDir
/var/work/temp/BUILD-OUTPUT -ae -t package.tar'
 post_build:
 commands:
 - |
 mkdir -p /var/work/temp/BUILD-OUTPUT/
 cd /var/work/temp/BUILD-OUTPUT/
 echo "get /var/work/temp/BUILD-OUTPUT/package.tar" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
 echo "get /var/work/pipeline/CBSA/AWS-Deployment/appspec.yml" | sftp -i /tmp/id_rsa -P
31772 -o StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
 echo "get /var/work/pipeline/CBSA/AWS-Deployment/deployment-sandbox.sh" | sftp -i
/tmp/id_rsa -P 31772 -o StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-
2.compute.internal
 mv deployment-sandbox.sh deployment.sh
 echo "mget /var/work/temp/BUILD-OUTPUT/*.txt" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
 echo "mget /var/work/temp/BUILD-OUTPUT/*.log" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
 echo "mget /var/work/temp/BUILD-OUTPUT/*.html" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
 echo "mget /var/work/temp/BUILD-OUTPUT/*.json" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
 echo "mget /var/work/temp/BUILD-OUTPUT/*.xml" | sftp -i /tmp/id_rsa -P 31772 -o
StrictHostKeyChecking=accept-new ibmuser@ip-10-0-35-91.us-east-2.compute.internal
 for f in `find . -type f -name "*.*"`; do aws s3 cp $f s3://cbsa-
backend/${PipelineID}/; done;
reports:
 zUnit:
 files:
 - "*.xml"
 discard-paths: yes
 file-format: JunitXml
 base-directory: "/var/work/temp/BUILD-OUTPUT/"
artifacts:
 files:
 - package.tar
 - appspec.yml
 - deployment.sh
 discard-paths: yes
 base-directory: "/var/work/temp/BUILD-OUTPUT/"

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 26/52

This build specification is split into 3 different sections. The pre_build step prepares the environment for

the execution of the build: it downloads a private key to the container using the aws command-line

interface. This private key will be used to connect to the Wazi Sandbox system with the IBMUSER user.

The private key is stored on AWS Secret Manager, and the AWS CodeBuild role was added to the capability

to read from AWS Secret Manager.

The build section contains the commands that will be executed on z/OS through SSH. As the connection

is performed with SSH, the session must be established against the OpenShift worker node that runs the

Wazi Sandbox system. This information can be retrieved from the OpenShift console, by looking at the

pod details for the Wazi Sandbox project.

Here is an example showing such information:

The Wazi Sandbox image is running on node ip-10-0-35-91.us-east-2.compute.internal, as shown on the

bottom-right corner of the above image. This information will be used to set up the SSH connection, and

the SSH port used by the Wazi Sandbox system can be retrieved from the node port configuration:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 27/52

The port exposed by Wazi Sandbox to connect with SSH to the Z system is 31772. This information will be

used in the buildspec definition to send SSH and SFTP commands (used in the post_build phase).

The build section contains an SSH command that is chaining several actions:

• The initial commands are used to set up environment variables on z/OS,

• Then, Git commands are used to fetch and pull changes on z/OS from the Git repository,

• The first call to DBB is used to perform an impact build on the changed files,

• The second call to DBB is used to execute a script to package the build output artifacts

(PackageBuildOutputs.groovy script) into an archive.

Depending on your cloning strategy, another option to retrieve the content of the Git repository would

be to clone the repository for each pipeline execution. This decision to use either clone or fetch/pull

commands also depends on the size of the Git repository, which has an impact on the execution elapse

time for the pipeline.

Also, the SSH command described above is using chained commands. For convenience, you may want to

use scripts that group these commands together, for a better readability and maintenance.

The last section, post_build, retrieves artifacts from z/OS using SFTP commands: it first retrieves the

package that was just created during the build phase, along with two files that will be used during the

CodeDeploy phase. The appspec.yml file will define the list of actions to perform during the deployment,

while the deployment.sh script will drive the deployment commands. These files will be described in the

next section of this document.

Also, the build log files (*.txt or *.log files), the DBB Build Report (in JSON and HTML format) and reports

in XML format (produced by the zUnit feature, for instance) are retrieved using SFTP commands. The list

of files that are retrieved can be customized based on users’ needs. These files are then sent to an AWS

S3 bucket for archiving purposes, and to help developers understand what happened during the build

phase.

The reports section defines specific processing for some files: in our configuration, JUnit compatible files

(generated from zUnit files) are uploaded as JUnit reports, so developers can check for Unit Testing trends

on AWS through AWS CodeBuild’s Report Groups feature. Finally, the artifacts section defines which

artifacts should be packaged together into a ZIP file that will be stored on a specific AWS S3 bucket (the

AWS S3 bucket to use during the pipeline be defined later in the pipeline definition, in AWS CodePipeline).

3.2 Using AWS CodeDeploy to deploy z/OS artifacts

In our setup, the next building block leveraged in the CI/CD pipeline is the AWS CodeDeploy service. The

purpose of this service is to execute deployment actions.

These deployment tasks are defined in a deployment specification file, called appspec.yml, that must be

provided in the package that contains the artifacts to deploy.

AWS CodeDeploy proposes several options to run the deployment actions: it can either use an existing

image on AWS EC2, a serverless process using AWS Lambda or a container on AWS ECS. In our

configuration, we chose to leverage an existing EC2 image of our infrastructure, which was already hosting

the DBB 1.1.3 WebApp server. Thus, when creating the application in the AWS CodeDeploy service, the

Compute platform option chosen is EC2/on-premises:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 28/52

To be able to use the EC2 instance to deploy our Z artifacts, a few steps must be performed on the EC2

environment.

3.2.1 Installing and configuring AWS CodeDeploy agent

The first action is to install an AWS CodeDeploy agent. This agent will connect to the AWS infrastructure

and execute scripts as defined in the deployment specification. The AWS documentation22 provides the

necessary information to install and register the agent to your AWS account. Also, to be able to deploy,

the machine running the AWS CodeDeploy agent needs to be assigned an IAM that has the necessary

credentials. This AWS documentation page23 provides more information on how to setup these

permissions. After assigning the IAM role to the instance, the AWS CodeDeploy agent may need to be

restarted, with the systemctl restart codedeploy-agent command.

22 https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent-operations.html
23 https://docs.aws.amazon.com/codedeploy/latest/userguide/security-iam.html

https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent-operations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/security-iam.html

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 29/52

After creating the application in the AWS CodeDeploy service, the next phase is to create a deployment

group, which defines the specifications for the deployment process. After providing a name for the

deployment group, the main step is to define which EC2 instances are used for the deployment. Tags can

be used to identify which EC2 instance should be used. We are specifying those instances with the tag

DeploymentMachine.

All the other properties of the Deployment group are kept by default, and the Load balancing option is

disabled.

We added the same tag to our EC2 instance when editing its properties:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 30/52

3.2.2 Configuring the deployment tasks

Later, when including the deployment step in the AWS CodePipeline definition, the location of the AWS

S3 bucket that stores the package for deployment needs to be specified. Within this package, it is expected

to find an appspec.yml file, that describes the different actions to perform. Here is an example of the

appspec.yml file used in our configuration:

For help completing this file, see the "AppSpec File Reference" in the

"CodeDeploy User Guide" at

https://docs.aws.amazon.com/codedeploy/latest/userguide/app-spec-ref.html

version: 1.0

os: linux

files:

 - source: /

 destination: /var/work/deploy/

file_exists_behavior: OVERWRITE

permissions:

 - object: /var/work/deploy/

 owner: root

 group: root

 mode: 777

hooks:

 AfterInstall:

 - location: deployment.sh

 runas: root

 timeout: 1800

The files section of this sample file describes the destination path where the package should be copied

and expanded on the EC2 machine: in our configuration, the package will be expanded in the

/war/work/deploy folder. Commands to execute are described in the hooks section. In our configuration,

the AfterInstall action is performed by executing the deployment.sh script, which is also part of the ZIP

package (created during the build phase).

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 31/52

We recommend to store both the appspec.yml file and the deployment.sh script in a specific subfolder of

our application’s Git repository:

The deployment.sh script contains commands to deploy Z artifacts to a target Z system, using Ansible

playbooks. Depending on the infrastructure, the tooling and deployment strategy, any other solution can

be chosen for deploying Z artifacts to the target Z system.

3.3 Defining the AWS CodePipeline orchestration

The AWS CodePipeline service in AWS is used to orchestrate multiple steps for a complete CI/CD pipeline.

A pipeline in AWS typically is composed of three major steps: Source, Build and Deploy. To integrate these

steps into a new pipeline, the AWS CodeBuild and AWS CodeDeploy configurations we previously defined

will be leveraged.

The first action is to create a new pipeline in AWS CodePipeline. After specifying a name for this pipeline,

you can choose to create a new Service Role if none exists for your account:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 32/52

For the Artifact store, we specify the existing AWS S3 bucket, which we had configured in the previous

step. For the Encryption key, the default value will be used.

The next panel lets you choose the configuration for the first step of the pipeline, the Source stage. In the

Source provider drop-down list, the AWS CodeCommit service will be used, while choosing the Git

repository that hosts our source files. The Development branch will be the branch used as source: every

change to this branch will then trigger the execution of this CI/CD pipeline:

Default values are left for the remaining options.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 33/52

3.3.1 Integrating the build specification

In the next phase, we will configure the Build step of the pipeline. AWS CodeBuild will be selected as the

provider for this action. Select the Build project that we previously created.

Environment variables are also provided for the execution of the Build phase: in our setup, the PipelineID

environment variable is defined with the value #{codepipeline.PipelineExecutionId}, which will be

leveraged during the execution of the build step (See section 3.1 Configuring AWS CodeBuild to build

mainframe applications).

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 34/52

3.3.2 Integrating the deployment configuration

The Deploy phase is the last phase of the pipeline.

Select AWS CodeDeploy as the provider for this action, which will allow you to pick the existing application

name CBSA-backend and the deployment group Deployment-Sandbox to specify the target runtime

environment:

3.3.3 Verifying the pipeline execution

After the creation of the pipeline, it will be automatically executed for the first time. The Source step

should execute successfully, continuing with the Build phase:

The Details link is a convenient way to monitor the execution of the Build step, executing actions on the

Z Sandbox system.

The last phase of the pipeline is the deployment on the target Wazi Sandbox system:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 35/52

If the deployment went successfully, the pipeline should appear complete.

3.4 A sample developer workflow

To demonstrate the execution of the pipeline we just configured, a simple change can be implemented

using Wazi for DevSpaces. This change should trigger the pipeline execution in AWS CodePipeline.

3.4.1 Implementing a change with Wazi for DevSpaces

The purpose of this change is to verify the correct configuration of the different components of the setup.

Hence, the change we will implement is very simple and is not aiming to jeopardize the build of the

artifact. We will just insert a comment (on line 13 here) in a Cobol program, called DPAYAPI, that belongs

to the CBSA Git repository hosted on AWS CodeCommit.

The change is implemented on the Development branch of our CBSA Git repository. The next step is to

commit the change on our local Development branch, by providing a commit message:

The bottom-left icon then shows a change on the Development branch is waiting to be pushed to the AWS

CodeCommit repository. Clicking on the highlighted button below will push the changes to the

Development branch on the central Git repository:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 36/52

3.4.2 Monitoring the pipeline execution in AWS CodePipeline

In AWS CodePipeline, the pipeline previously configured should be now executing:

Clicking on this pipeline brings you to the execution details, where you can see the Build phase currently

being executed:

On the Details page, you get more information about the build process that is executed:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 37/52

This page allows you to monitor the execution of the build phase, which leverages DBB running on the

Wazi Sandbox system. Clicking on the Tail logs button shows the execution log being updated live:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 38/52

When the build phase is done, the pipeline executes the Deploy phase:

Via the Details link, you can browse information about the deployment being processed:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 39/52

You can then click on the View events link to check the different steps of the deployment process:

After a short period of time, the deployment should be completed, and the application successfully

deployed:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 40/52

3.4.3 Browsing the pipeline artifacts and reports

If zUnit artifacts were generated as part of the pipeline and exported as test reports (See section 3.1

Configuring AWS CodeBuild to build mainframe applications), the test reports can be visualized in AWS

CodeBuild, under the Report groups submenu item.

As build log files and artifacts are also stored in an AWS S3 bucket, they can also be browsed, for

traceability or debugging purposes:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 41/52

For instance, the HTML version of the DBB Build Report can be consulted by clicking on it:

With all the information collected from the pipeline and stored on the AWS Cloud platform, the

developers have access to all the required knowledge when building and diagnosing issues with the

different stages of the CI/CD pipeline.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 42/52

4 Building a CI/CD pipeline with Azure DevOps and IBM Z & Cloud
Modernization Stack

This section outlines the steps needed to configure a CI/CD process using IBM Z & Cloud Modernization

Stack24 with Wazi Dev Spaces and Wazi Sandbox on Microsoft Azure and its DevOps services (ADO).

To start, begin with the steps defined in sections 1 and 2 of this document. They are common across all

IBM supported cloud providers including Azure, which defines a foundation that includes:

• Administrative steps to install and configure:

o A RedHat OpenShift Cluster (OCP) in a Cloud environment.

o IBM’s Dependency Based Build (DBB) and its supporting utility scripts.

o A Git Repository structure that is compatible with DBB build frameworks like zAppBuild.

o Support for ZUnit and the IBM testing framework.

• Developer Tools are defined in the section titled ”Setting up Wazi for Dev Spaces and Wazi Analyze”.

It describes the developer experience using:

o Wazi DevSpaces

o Wazi Sandbox

o Wazi Analyze

o ZUnit

In addition to the foundational services defined above, some administrative steps specific to defining an

Azure DevOps CI/CD will be needed. See IBM’s “Getting Started” reference for more details - Azure

DevOps and IBM Dependency Based Build Integration

This section assumes prior knowledge of DevOps concepts with IBM DBB on z/OS, Azure DevOps, z/OS

systems knowledge and Cloud Administration.

4.1 Azure DevOps and z/OS integration

As defined in the “Getting Started” reference above, a basic25 CI/CD process runs a build, publish, and

deploy workflow on a target z/OS environment. However, in this document, an alternative publishing and

deployment process is provided that uses ADO Artifacts and ADO Release with IBM’s Wazi Deploy tool.

The “Getting Started” reference also describes how to define an ADO Agent with SSH connectivity to a

z/OS host. Those same steps can be applied to connecting to a virtual z/OS like a Wazi Sandbox. In this

example, an Azure Ubuntu VM was provisioned and configured as a self-hosted agent on the same subnet

as a provisioned Red Hat Open Shift Container Platform (OCP). Also, an ADO SSH Service Connection was

defined with a RACF User’s SSH key, IP and port of the Wazi Sandbox. In the example below, the SSH

service is called wazi-sandbox:

24 Microsoft Azure Marketplace
25 More mature pipelines may include other tasks like quality gates, peer-review, approvals or more.

https://www.ibm.com/support/pages/node/6422813
https://www.ibm.com/support/pages/node/6422813
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/ibm-usa-ny-armonk-hq-6275750-ibmcloud-asperia.ibm-z-and-cloud-modernization-stack?tab=Overview

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 43/52

4.2 Creating the Git repository

Starting with a new ADO Project as shown below, a repository configured for DBB is created. ADO supports

all major Git providers. This example uses Azure Repos.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 44/52

4.3 Defining the CI pipeline in Azure DevOps

The CI pipeline example below illustrates the clone, build and publishing tasks26.

The first 3 steps are SSH tasks that are securely executed on the Wazi Sandbox system deployed in

OCP.

For example, the SSH task below references an SSH Service Connection (endpoint) and a command.

In this case, the endpoint is to a Wazi Sandbox and the command is a Git Clone shell script. Variable

definitions and sample shell scripts are provided in the “Getting Started” reference.

The package task runs an SSH shell command to launch the DBB groovy utility called

PackageBuildOutputs.groovy (see “Retrieving the Build framework” section above). The shell script

takes one argument passed by the pipeline that points to the build step’s DBB artifacts folder known

as the DBB --workdir argument.

In this example, the groovy script and its shell launcher are placed in a subfolder within a cloned copy

of dbb-zappbuild. But they can be stored on any accessible sandbox Unix Filesystem folder.

26 Tasks have been split for illustration purposes. But can be combined as needed.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 45/52

The reference to . /etc/profile in line 2 is used to initialize the DBB environment variables used to

launch the script under the DBB groovyz utility. The arguments passed to the script include:

• A DBB Daemon host IP and its port which is described in the DBB Users Guide27.

• The $package variable with the location of the packaging groovy script (line 3).

• --workDir is the working directory for zAppBuild ($1).

• The -ae parameter is required to add extensions to each artifact that is packaged

• -t is the name for the package file. This contains all objects to be deployed like load modules,

CICS Maps, DB2 DBRM’s and whatever items are needed by the application.

Stage is a bash task that runs SFTP on the Agent as shown below. The inline script performs the following

steps:

o Changes directory to the Agent’s Staging Directory of the current run,

o Makes a new directory to store DBB logs and HTML report,

o Creates a file, called ftpBat, to drive the SFTP commands that includes the application package

and DBB logs.

27 Note always refence the latest document version - IBM Dependency Based Build 2.0.x - IBM Documentation

https://www.ibm.com/docs/en/dbb/2.0.0

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 46/52

Publish is a Universal Package task with:

o The command Publish,

o The default system PATH of the Agent’s Staging Directory of the prior step,

o The pre-defined Feed name - in this case, it’s called Azure-IBM-ModStack-Feed,

o A package name - in this case, it is the name of the sample application.

An optional Publish build artifacts task can be added to save DBB logs. This task uses the Agent’s default

working directory to store the logs of the Build step in a folder called dbb-logs in this example. Provide

an Artifact name like DBB Logs and use Azure Pipelines as the location:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 47/52

When the job is complete, the logs are available from the publish link in its summary page.

The contents of the published artifacts:

A sample COBOL compiler and Linkedit SYSPRINT:

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 48/52

A sample DBB BuildReport.html:

4.4 Creating the Release pipeline (CD)

An ADO Release pipeline defines the steps to download a package and deploy it to a target z/OS Wazi

Sandbox as shown in the example below. This documentation28 describes how to define a release.

Releases are Continuous Deployment processes that define how packages are deployed in each Stage.

Releases can be triggered automatically or manually via an approval policy. They are associated with the

Artifact feed of a related application CI pipeline.

Stages consist of tasks to deploy a package to a target environment. In this example, a stage called Dev

has several tasks to deploy a DBB package to a Wazi sandbox. Stages are normally chained from Dev to

QA to Prod (although not shown in this example). Packages can be promoted to upper stages with the

proper approvals and quality gates.

28 https://microsoft.github.io/botframework-solutions/solution-accelerators/tutorials/enable-continuous-
deployment/2-create-pipeline/

https://microsoft.github.io/botframework-solutions/solution-accelerators/tutorials/enable-continuous-deployment/2-create-pipeline/
https://microsoft.github.io/botframework-solutions/solution-accelerators/tutorials/enable-continuous-deployment/2-create-pipeline/

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 49/52

An active or completed Release has a logs tab to review progress. Below is an example log of the Dev

stage’s tasks.

. Clicking on a task, like Stage Package below, provides details and any potential error messages.

4.4.1 Staging Packages for Deployment

Stage Package is a Universal package task to run the Download command on an Agent. In this case, the

latest version of the package created by the related CI pipeline is copied to a location defined by

Destination directory on the Agent’s file system. The Agent can be the same one used in the CI phase or

within a pool of available agents with similar capabilities.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 50/52

Refresh deployment tool is a custom inline bash script to initialize the IBM Wazi Deploy configuration on

the Agent. In this case, the deployment tools are cloned from an administrative repository. But they can

be pre-installed on the agent.

The last 2 tasks, Prepare and Deploy, leverage IBM Wazi Deploy’s Ansible playbooks. They unpack the

package and deploy artifacts to a target environment (Ansible managed node). Actions to handle CICS,

DB2 and standard batch programs are all supported.

The Prepare the Deployment Plan task generates a Wazi Deploy deployment plan on the agent.

The Deploy to Dev Wazi Sandbox task uses the generated Deployment Plan and downloaded package from

Azure Artifacts to run the Ansible playbook against the target Wazi Sandbox.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 51/52

4.5 Azure DevOps End-to-End

The diagram below outlines the very basic components of the CI/CD solution described in this section. It

highlights an Azure Environment with Azure DevOps and its core services, a RedHat OpenShift Cluster that

hosts an IBM Z and Cloud Modernization Stack which contains the build, publish, and deploy components.

For more details on the developer flow, refer to the section 2.3 Setting up Wazi for Dev Spaces and Wazi

Analyze which is common across all IBM supported Cloud providers.

Building enterprise CI/CD pipelines for mainframe applications using the IBM Z & Cloud Modernization Stack Page 52/52

5 Conclusion

This document provides recipes and showcases how to integrate the Wazi components of the IBM Z Cloud

and Modernization Stack (Wazi Dev Spaces, Wazi Sandbox, Wazi Deploy and Wazi Analyze) to provide a

Cloud-native experience for developers and administrators using services that can be provisioned in

minutes.

The examples provided throughout this document can serve as a baseline to implement your own DevOps

toolchain leveraging Wazi components. Some customizations will be needed to meet your SDLC best

practices and workflows.

This document also showcases an implementation of the Wazi tools on the AWS Cloud and Azure Cloud

platforms. However, they can be used as a reference across all supported IBM cloud providers.

The purpose of leveraging Cloud services is to modernize the Software Delivery Lifecycle of mainframe

applications, by providing isolated development and test runtimes for more flexibility and agility in

development practices.

